Skip to main content

The Runt Domain Transcription Factor, PEBP2/CBF, and its Involvement in Human Leukemia

  • Chapter
Oncogenes as Transcriptional Regulators

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

AML1 is the mammalian homolog of the Drosophila segmentation gene, runt, and was originally identified at the beakpoint of the chromosome translocation, t(8;21), associated with acute myeloid leukemia. Subsequently, AML1 was found to be a frequent target of chromosome translocations associated with several other types of human leukemia including that associated with t(12;21) lymphoblastic leukemia. The product of AML1 is the α subunit of transcription factor PEBP2/CBF. The DNA binding domain of AML1, termed the Runt domain, also serves as the additional function of interacting with its partner protein, the β subunit. The gene that encodes the β subunit is also the target of inversion of chromosome 16 [inv(16)], another chromosome anomaly associated with acute myeloid leukemia. This surprising observation strongly suggests that the two subunits indeed function together as a heterodimer and play an important role in hematopoiesis. Therefore, elucidation of the structure and function of the Runt domain factor, PEBP2/CBF, has become very important for our understanding of the pathogenesis of many types of human leukemia. The involvement of AML1 and the β subunit gene in various types of chromosome translocations has been reviewed recently (Nucifora and Rowley, 1995; Liu et al, 1995). Here we shall focus our discussion on reviewing the structure and the function of PEBP2/CBF and how these two subunits are structurally altered when they are activated as oncogenes by chromosome translocations. This subject has also been reviewed recently by several other investigators (Speck and Stacy, 1995; Hiebert et al, 1996 a; Ito, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamatsu Y, Tsukumo SI, Kagoshima H, Tsurushita N, Shigesada K (1997): A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2α subunit, a founding member of the Runt domain protein family. Gene 185: 111–117

    Article  CAS  PubMed  Google Scholar 

  • Amati P (1985): Polyoma regulatory region: a potential probe for mouse cell differentiation. Cell 43: 561–562

    Article  CAS  PubMed  Google Scholar 

  • Asano M, Murakami Y, Furukawa K, Yamaguchi-Iwai Y, Satake M, Ito Y (1990): A poly-omavirus enhancer-binding protein, PEBP5, responsive to 12-O-tetradecanoyl-phorbol-13-acetate but distinct from AP-1. J Virol 64: 5927–5938

    CAS  PubMed  Google Scholar 

  • Bae SC, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima K, Shigesada K, Satake M, Ito Y (1993): Isolation of PEBP2αB cDNA representing the mouse homology of human acute myeloid leukemia gene. AML1. Oncogene 8: 809–814

    CAS  PubMed  Google Scholar 

  • Bae SC, Ogawa E, Maruyama M, Oka H, Satake M, Shigesada K, Jenkins NA, Gilbert DJ, Copeland NG, Ito Y (1994): PEBP2αB/Mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol 14: 3242–3252

    CAS  PubMed  Google Scholar 

  • Bae SC, Takahasi E, Zhang YW, Ogawa E, Shigesada K, Namba Y, Satake M, Ito Y (1995): Cloning, mapping and expression of PEBP2αC, a third gene encoding the mammalian Runt domain. Gene 159: 245–248

    Article  CAS  PubMed  Google Scholar 

  • Boral AL, Okenquist SA, Lenz J (1989): Identification of the SL3-3 virus enhancer core as a T lymphoma cell-specific element. J Virol 63: 76–84

    CAS  PubMed  Google Scholar 

  • Cameron S, Taylor DS, TePas EC, Speck NA, Mathet-Prevot B (1994): Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo foot printing. Blood 83: 2851–2859

    CAS  PubMed  Google Scholar 

  • Claxton DF, Liu P, Hsu HB, Marlton P, Hester J, Collins F, Deisseroth AB, Rowley JD, Siciliano MJ (1994): Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood 83: 1750–1756

    CAS  PubMed  Google Scholar 

  • Daga A, Tighe JE, Calabi F (1992): Leukaemia/Drosophila homology. Nature 356: 484

    Article  CAS  PubMed  Google Scholar 

  • Daga A, Karlovich CA, Dumstrei K, Banerjee J (1996): Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domain with AML1. Genes Dev 10: 1194–1205

    Article  CAS  PubMed  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992): Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825–1831

    CAS  PubMed  Google Scholar 

  • Feinstem PG, Kornfeld K, Hogness DS, Mann RS (1995): Identification of homeotic target genes in Drosophila melanogaster including Nervy, a proto-oncogene homolog. Genetics 140: 573–586

    Google Scholar 

  • Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD (1995): The AML1/ETO fusion protein blocks transactivation of GM-CSF promoter by AML1B. Oncogene 11: 2667–2674

    CAS  PubMed  Google Scholar 

  • Fujimura FK, Deininge PL, Friedman T, Linney E (1981): Mutation near the polyoma-virus DNA replication origin permits productive infection of F9 embryonal carcinoma cell. Cell 23: 809–814

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy V, Ducy P, Karsenty G (1995): A PEBP2α/AMLl-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J Biol Chem 270: 30973–30979

    Article  CAS  PubMed  Google Scholar 

  • Giese K, Kingsley C, Kirshner JR, Grosschedl R (1995): Assembly and function of a TCRα enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 9: 995–1008

    Article  CAS  PubMed  Google Scholar 

  • Golling G, Li LH, Pepling M, Stabbins M, Gergen JP (1996): Drosophila homologs of the proto-oncogene product PEBP2/CBFβ regulate the DNA-binding properties of Runt. Mol Cell Biol 16: 932–942

    CAS  PubMed  Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG (1995): Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92: 4917–4921

    Article  CAS  PubMed  Google Scholar 

  • Hajra A, Liu PP, Speck NA, Collins FS (1995a): Overexpression of core-binding factor α (CBFα) reverse cellular transformation by the CBFβ-smooth muscle myosin heavy chain chimeric oncoprotein. Mol Cell Biol 15: 4980–4989

    CAS  PubMed  Google Scholar 

  • Hajra A, Liu PP, Wang Q, Kelley CA, Stacy T, Adelstein RS, Speck NA, Collins FS (1995b): The leukemic core binding factor β-smooth muscle myosin heavy chain (CBFβ-SMMHC) chimeric protein requires both CBFβ and myosin heavy chain domains for transformation of NIH3T3 cells. Proc Natl Acad Sci USA 92: 1926–1930

    Article  CAS  PubMed  Google Scholar 

  • Herbomel P, Bourachot B, Yaniv M (1984): Two distinct enhancers with different cell specificities coexist in the regulatory region of polyomavirus. Cell 39: 653–662

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Munain C, Krangel MS (1995): c-Myb and core-binding factor/PEBP2 display functional synergy but bind independently to adjacent sites in the T-cell receptor d enhancer. Mol Cell Biol 15: 3090–3099

    CAS  PubMed  Google Scholar 

  • Hiebert SW, Downing JR, Lenny N, Meyers S (1996a): Transcriptional regulation by t(8;21) fusion protein, AML1/ETO. Curr Top Microbiol Immunol 221: 253–258

    Article  Google Scholar 

  • Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A, downing JR, Grosveld G, Roussel MF, Gilliland DG, Lenny N, Meyers S (1996b): The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 16: 1349–1355

    CAS  PubMed  Google Scholar 

  • Hsiang YH, Spencer D, Wang S, Speck NA, Raulet DH (1993): The role of viral enhancer “core” motif-related sequences in regulating T cell receptor-γ and -δ gene expression. J Immunol 150: 3905–3916

    CAS  PubMed  Google Scholar 

  • Ito Y (1996): Structural alterations in the transcription factor PEBP2/CBF linked to four different types of leukemia. J Cancer Res Clin Oncol 122: 266–274

    Article  CAS  PubMed  Google Scholar 

  • Jackson ME, Campo MS (1995): Both viral E2 protein and the cellular factor PEBP2 regulate transcription via E2 consensus site within the bovine papillomavirus type 4 long control region. J Virol 69: 6038–6046

    CAS  PubMed  Google Scholar 

  • Kagoshima H, Satake M, Miyoshi H, Ohki M, Pepling M, Gergen P, Shigesada K, Ito Y (1993): The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends and Genetics 9: 338–341

    Article  CAS  Google Scholar 

  • Kagoshima H, Akamatsu Y, Ito Y, Shigesada K (1996): Functional dissection of the α and β subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J Biol Chem 271: 33074–33082

    Article  CAS  PubMed  Google Scholar 

  • Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, Ito Y, Shigesada K (1990): Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomarvirus enhancer. J Virol 64: 4808–4819

    CAS  PubMed  Google Scholar 

  • Kania MA, Bonner AS, Duffy JB, Gergen JP (1990): The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev 4: 1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Katinka M, Yaniv M, Vasseur M, Blangy D (1980): Expression of polyoma early functions in mouse embryonal carcinoma cells depends on sequence rearrangements in the beginning of the late region. Cell 20: 393–399

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Tanaka T, Tanaka K, Ogawa S, Mitani K, Yazaki Y, Hirai H: Overexpression of the AML1 proto-oncogene in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivation potencies. Oncogene 12: 883-892

    Google Scholar 

  • Lenny N, Meyers S, Hiebert SW (1995): Functional domains of the t(8;21) fusion protein, AML1/ETP. Oncogene 11: 1761–1769

    CAS  PubMed  Google Scholar 

  • Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y (1994): AML1, AML2 and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosoma localization. Genomics 23: 425–432

    Article  CAS  PubMed  Google Scholar 

  • Lim F, Kraut N, Frampton J, Graf T (1992): DNA binding by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism. EMBO J 11: 643–652

    CAS  PubMed  Google Scholar 

  • Liu PP, Tarlé SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS (1993): Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261: 1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Hajra A, Wijmenga C, Collins FS (1995): Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 85: 2289–2302

    CAS  PubMed  Google Scholar 

  • Lu J, Maruyama M, Satake M, Bae SC, Ogawa E, Kagoshima H, Shigesada, Ito Y (1995): Subcellular localization of the α and β subunits of acute myeloid leukemia-linked transcription factor PEBP2. Mol Cell Biol 15: 1651–1661

    CAS  PubMed  Google Scholar 

  • Matsuoka R, Yoshida MC, Furutani Y, Imamura S-I, Kanda N, Yanagisawa M, Masaki T, Takao A (1993): Human smooth muscle myosin heavy chain gene mapped chromosomal region 16q12. Am J Med Genet 46: 61–67

    Article  CAS  PubMed  Google Scholar 

  • Melnikova IN, Crute BE, Wang S, Speck NA (1993): Sequence specificity of the core-binding factor. J Virol 67: 2408–2411

    CAS  PubMed  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW (1993): Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13: 6336–6345

    CAS  PubMed  Google Scholar 

  • Meyers S, Lenny N, Hiebert SW (1995): The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 15: 1974–1982

    CAS  PubMed  Google Scholar 

  • Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H (1994): Generation of the AML1-EVI-1 fusion gene in the t(8;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 13: 504–510

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Shimizu K, KozuT, Maseki N, Kaneko Y, Ohki M (1991): t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88: 10431–10434

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M (1993): The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12: 2715–2721

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M (1995): Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nuc Acid Res 23: 2762–2769

    Article  CAS  Google Scholar 

  • Morishita K, Parganas E, Willman CL, Whittaker MH, Drabkin H, Oval J, Taetle R, Valentine MB, Ihle JN (1992): Activation of EV1I gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilo bases on chromosome 3q26. Proc Natl Acad Sci USA 89: 3937–3941

    Article  CAS  PubMed  Google Scholar 

  • Nisson PE, Watkins PC, Sacchi N (1992): Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet Cytogenet 63: 81–88

    Article  CAS  PubMed  Google Scholar 

  • Nucifora G, and Rowley JD (1995): AML1 and the 8;21 and 3;21 translocation in acute and chronic myeloid leukemia. Blood 86: 1–14

    CAS  PubMed  Google Scholar 

  • Nucifora G, Begy CR, Erickson P, Drabkin HA, Rowley JD (1993): The 3;21 translocation in myelodysplasia results in a fusion transcript betweeen the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1 . Proc Natl Acad Sci USA 90: 7784–7788

    Article  CAS  PubMed  Google Scholar 

  • Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J, Parganas E, Ihle JN, Rowley JD (1994): Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci USA 91: 4004–4008

    Article  CAS  PubMed  Google Scholar 

  • Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993a): Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α. Virology 194: 314–331

    Article  CAS  PubMed  Google Scholar 

  • Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y (1993b): PEBP2/PEBP2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 90: 6859–6863

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, van-Deursen J, Hiebert SW, Grosveld G, Downing JR (1996): AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330

    Article  CAS  PubMed  Google Scholar 

  • Piette J, Yaniv M (1987): Two different factors bind to the domain of the polyoma virus enhancer, on of which also interacts with the SV40 and c-fos enhancers. EMBO J 6: 1331–1337

    CAS  PubMed  Google Scholar 

  • Romana SP, Mauchauffé M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA (1995): The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85: 3662–3670

    CAS  PubMed  Google Scholar 

  • Sakakura C, Yamaguchi-Iway Y, Satake M, Bae SC, Takahashi A, Ogawa E, Hagiwara A, Takahashi T, Murakami A, Makino K, Nakagawa T, Kamada N, Ito Y (1994): Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci USA 91: 11 723-11 727

    Article  Google Scholar 

  • Sekikawa K, Levine AJ (1981): Isolation and characterization of polyoma host range mutants that replicate in multipotential embryonal carcinoma cells. Proc Natl Acad Sci USA 78: 1100–1104

    Article  CAS  PubMed  Google Scholar 

  • Shurtleff SA, Meyers S, Hiebert SW, Raimondi SC, Head DR, Willman CL, Wolman S, Slovak ML, Carroll AJ, Behm F, Hulshof MG, Motroni TA, Okuda T, Liu P, Collins FS, Downing JR (1995): Heterogeneity in CBFβ/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 85: 3695–3703

    CAS  PubMed  Google Scholar 

  • Speck NA, Stacy T (1995): A new transcription factor family associated with human leukemias. Critical Reviews in Eukaryotic Gene Expression eds. 5, pp 337–364

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Graves BJ, Speck NA (1995): Transactivation of the Moloney murine leukemia virus and T-cell receptor β-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol 69: 4941–4949

    CAS  PubMed  Google Scholar 

  • Takahashi A, Satake M, Yamaguchi-Iway Y, Bae SC, Lu J, Maruyama M, Zhang YW, Oka H, Arai N, Arai K, Ito Y (1995): Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 86: 607–616

    CAS  PubMed  Google Scholar 

  • Tanaka K, Chowdhury K, Chang KSS, Israel M, Ito Y (1982): Isolationand characterization of polyomavirus mutants which grow in murine embryonal carcinoma and trophoblast cells. EMBO J 1: 1521–1527

    CAS  PubMed  Google Scholar 

  • Tanaka T, Mitani K, Kurokawa M, Ogawa S, Tanaka K, Nishida J, Yazaki Y, Shibata Y, Hirai H (1995a): Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukomogenesis in t(3;21) leukemias. Mol Cell Biol 15: 2383–2392

    CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, Shibata Y, Yazaki Y, Hirai H (1995b): An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 14: 341–350

    CAS  PubMed  Google Scholar 

  • Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H (1996): The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 16: 3967–3979

    CAS  PubMed  Google Scholar 

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA (1996): Disruption of the cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 92: 3444–3449

    Article  Google Scholar 

  • Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA (1993): Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 13: 3324–3339

    CAS  PubMed  Google Scholar 

  • Wasylyk B, Wasylyk C, Flores P, Begue A, Le Prince D, Stehelin D (1990): The c-ets proto-oncogenes encode transcription factors that cooperate with c-Fos and c-Jun for transcriptional activation. Nature 346: 191–193

    Article  CAS  PubMed  Google Scholar 

  • Wasylyk C, Kerckaert JP, Wasylyk B (1992): A novel modulator domain of Ets transcription factors. Gene Dev 6: 965–974

    Article  CAS  PubMed  Google Scholar 

  • Waterman ML, Fischer WH, Jones KA (1991): A thymus-specific member of the HMG protein family regulates the human T cell receptor Ca enhancer. Genes Dev 5: 656–669

    Article  CAS  PubMed  Google Scholar 

  • Weiher H, Zong M, Gruss P (1983): Multiple point mutations affecting the simian virus 40 enhancer. Science 219: 626–631

    Article  CAS  PubMed  Google Scholar 

  • Wotton D, Ghysdael J, Wang S, Speck NA, Owen MJ (1994): Cooperative binding of Ets-1 and core binding factor to DNA. Mol Cell Biol 14: 840–850

    CAS  PubMed  Google Scholar 

  • Xin JH, Cowie A, Lachance P, Hassell JA (1992): Molecular cloning and characterization of PEA3, a member of the Ets oncogene family that differentially expressed in mouse embryonic cells. Gene Dev 6: 481–496

    Article  CAS  PubMed  Google Scholar 

  • Zhang DE, Fujioka K, Hetherington CJ, Shapiro LH, Chen HM, Look AT, Tenen DG (1994): Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 14: 8085–8095

    Article  CAS  PubMed  Google Scholar 

  • Zhang DE, Hohaus S, Voso MT, Chen HM, Smith LT, Hetherington CJ, Tenen DG (1996): Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 211: 137–147

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Yeadon J, Burden SJ (1994): AML1 is expressed in skeletal muscle and is regulated by innervation. Mol Cell Biol 14: 8051–8057

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Ito, Y., Bae, SC. (1997). The Runt Domain Transcription Factor, PEBP2/CBF, and its Involvement in Human Leukemia. In: Yaniv, M., Ghysdael, J. (eds) Oncogenes as Transcriptional Regulators. Progress in Gene Expression. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8934-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8934-6_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9833-1

  • Online ISBN: 978-3-0348-8934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics