Skip to main content

Absorption, distribution, and excretion

  • Chapter
Valproate

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Owing to its unique fatty acid structure, valproate exhibits a number of distinct pharmacokinetic characteristics in comparison to other aromatic and/or heterocyclic anticonvulsants. The pharmacokinetics of valproate have been the subject of regular reviews over the two decades of valproate’s usage as an anticonvulsant [1–4]. This chapter provides a summary of the salient features of the pharmacokinetics of valproate, and additionally, perspectives on emerging areas of investigation, such as the role of cell membrane barrier transport in governing the brain distribution of valproate and the biochemical basis of drug interactions between valproate and other anticonvulsants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gugler R, van Unruh GE (1980) Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 5: 67–83

    Article  PubMed  CAS  Google Scholar 

  2. Zaccara G, Messori A, Moroni F (1988) Clinical pharmacokinetics of valproic acid — 1988. Clin Pharmacokinet 15: 367–389

    Article  PubMed  CAS  Google Scholar 

  3. Davis R, Peters DH, McTavish (1994) Valproic acid: a reappraissal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47: 332–372

    Article  PubMed  CAS  Google Scholar 

  4. Levy RH, Shen DD (1995) Valproic acid: absorption, distribution, and excretion. In: Levy RH, Mattson RH, Meldrum BS, (eds): Antiepileptic drugs Raven Press, New York: 605–620

    Google Scholar 

  5. Levy RH, Cenraud B, Loiseau P, Akbaraly R, Brachet-Liermain A, Guyot M, Gomeni R, Morselli PL (1980) Meal-dependent absorption of enteric-coated sodium valproate. Epilepsia 21: 273–280

    Article  PubMed  CAS  Google Scholar 

  6. Fischer JH, Barr AN, Paloucek FP, Dorociak JV, Spunt AL (1988) Effect of food on the serum concentration profile of enteric-coated valproic acid. Neurology 38: 1319–1322

    Article  PubMed  CAS  Google Scholar 

  7. Carrigan PJ, Brinker DR, Cavanaugh JH, Lamm JE, Cloyd JC (1990) Absorption characteristics of a new valproate formulation of divalproex sodium-coated particles in capsules (Depakote Sprinkle). J Clin Pharmacol 30: 743–747

    PubMed  CAS  Google Scholar 

  8. Roberts D, Easter D, O’Bryan-Tear G (1996) Epilimchrono: a multidose, crossover comparison of two formulations of valproate in healthy volunteers. Biopharm Drug Dispos 17: 175–182

    Article  PubMed  CAS  Google Scholar 

  9. Loiseau P, Brachet-Liesmain A, Guyot M, Morselli P (1982) Diurnal variations in steady state plasma concentrations of valproic acid in epileptic patients. Clin Pharm 7: 544–552

    Article  CAS  Google Scholar 

  10. Yoshiyama Y, Nakano S, Ogawa N (1989) Chronopharmacokinetics study of valproic acid in man: comparison of oral and rectal administration. J Clin Pharmacol 29: 1048–1052

    PubMed  CAS  Google Scholar 

  11. Samara E, Granneman R, Achari R, Locke C, Cavanaugh J, Boellner S (1997) Bioavailability of a controlled-release formulation of depakote. Epilepsia 38: S102

    Google Scholar 

  12. Cavanaugh JH, Granneman R, Lamm J, Linnen P, Chun AHC (1997) Effect of food on the bioavailability of a controlled-release formulation of depakote under multiple-dose conditions. Epilepsia 38: S54

    Article  Google Scholar 

  13. Vajda FJE, Mihaly GW, Miles JL, Donnan GA, Bladin PF (1978) Rectal administration of sodium valproate in status epilepticus. Neurology 28: 897–899

    Article  PubMed  CAS  Google Scholar 

  14. Snead OC III, Miles MV (1985) Treatment of status epilepticus in children with rectal sodium valproate. J Pediatr 106: 323–325

    Article  PubMed  Google Scholar 

  15. Cloyd JC, Kriel RL (1981) Bioavailability of rectally administered valproic acid syrup. Neurology 31: 1348–1352

    Article  PubMed  CAS  Google Scholar 

  16. Tamai K, Takanaga H, Maeda H, Yabuuchi H, Sai Y, Suzuki Y, Tsuji A (1997) Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms. J Pharm Pharmacol 49: 108–112

    Article  CAS  Google Scholar 

  17. Yabuuchi H, Tamai I, Sai Y, Tsuji A (1998) Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter. Pharm Res 15: 411–416

    Article  PubMed  CAS  Google Scholar 

  18. Cramer JA, Mattson RH, Bennett DM, Swick CT (1986) Variable free and total valproic acid concentrations in sole-and multidrug therapy. Ther Drug Monit 8: 411–415

    Article  PubMed  CAS  Google Scholar 

  19. Dasgupta A, McLemore JL (1998) Elevated free phenytoin and free valproic acid concentrations in sera of patients infected with human immunodeficiency virus. Ther Drug Monit 20: 63–67

    Article  PubMed  CAS  Google Scholar 

  20. Dasgupta A, Volk A (1996) Displacement of valproic acid and carbamazepine from protein binding in normal and uremic sera by tolmetin, ibuprofen, and naproxen: presence of inhibitor in uremic serum that blocks valproic acid — naproxen interactions. Ther Drug Monit 18: 284–287

    Article  PubMed  CAS  Google Scholar 

  21. Löscher W, Nau H (1984) Comparative transfer of valproic acid and of an active metabolite into brain and liver: possible pharmacological and toxicological consequences. Arch Int Pharmacodyn Ther 270: 192–202

    PubMed  Google Scholar 

  22. Brouwer KLR, Hall ES, Pollack GM (1993) Protein binding and hepatobiliary distribution of valproic acid and valproate glucuronide in rats. Biochem Pharmacol 45: 735–742

    Article  PubMed  CAS  Google Scholar 

  23. Nau H, Hauck R-S, Ehlers K (1991) Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 69: 310–321

    Article  PubMed  CAS  Google Scholar 

  24. Cotariu D, Zaidman JL (1991) Developmental toxicity of valproic acid. Life Sci 48: 1341–135

    Article  PubMed  CAS  Google Scholar 

  25. Nau H, Helge H, Luck W (1984) Valproic acid in the perinatal period: decreased maternal serum protein binding results in fetal accumulation and neonatal displacement of the drug and some metabolites. J Pediatr 104: 627–634

    Article  PubMed  CAS  Google Scholar 

  26. Nau H, Krauer B (1986) Serum protein binding of valproic acid in fetus-mother pairs throughout pregnancy correlation with oxytocin administration and albumin and free fatty acid concentrations. J Clin Pharmacol 26: 215–221

    PubMed  CAS  Google Scholar 

  27. Dencker L, Nau H, D’Argy R (1990) Marked accumulation of valproic acid in embryonic neuroepithelium of the mouse during early organogenesis. Teratology 41: 699–706

    Article  PubMed  CAS  Google Scholar 

  28. Nau H, Rating D, Koch S, Häuser I, Helge H (1981) Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. J Pharmacol Exper Ther 219: 768–777

    CAS  Google Scholar 

  29. von Unruh GE, Froescher W, Hoffmann F, Niesen M (1984) Valproic acid in breast milk: How much is really there? Ther Drug Monit 6: 272–276

    Article  Google Scholar 

  30. Wisner KL, Perel JM (1998) Serum levels of valproate and cabamazepine in breastfeeding mother-infant pairs. J Clin Pharmacol 18: 167–169

    CAS  Google Scholar 

  31. Stahl MMS, Neiderud J, Vinge E (1997) Thrombocytopenic purpura and anemia in a breast-fed infant whose mother was treated with valproic acid. J Pediatr 130: 1001–1003

    Article  PubMed  CAS  Google Scholar 

  32. Frey H-H, Löscher W (1978) Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 17: 637–642

    Article  PubMed  CAS  Google Scholar 

  33. Pollack GM, Shen DD (1985) A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J Pharmacol Methods 13: 135–146

    Article  PubMed  CAS  Google Scholar 

  34. Levy RH (1980) CSF and plasma pharmacokinetics: relationship to mechanisms of action as exemplified by valproic acid in monkey. In: J Lockard, A Ward (eds): Epilepsy: A window to brain mechanisms Raven Press, New York, 11: 191–200.

    Google Scholar 

  35. Shen DD, Ojemann GA, Rapport RL, Dills RL, Friel PN, Levy RH (1992) Low and variable presence of valproic acid in human brain. Neurology 42: 582–585

    Article  PubMed  CAS  Google Scholar 

  36. Adkison KD, Shen DD (1996) Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther 276: 1189–1200

    PubMed  CAS  Google Scholar 

  37. Adkison KDK, Artru AA, Powers KM, Shen DD (1994) Contribution of probenecid-sensitive anion transport processes at the capillary endothelium and choroid plexus to the efficient efflux of valproic acid from the central nervous system. J Pharmacol Exper Ther 268: 797–805

    CAS  Google Scholar 

  38. Naora K, Shen DD (1995) Mechanism of valproic acid uptake by isolated rat brain micro-vessels. Epilepsy Res 22: 97–106

    Article  PubMed  CAS  Google Scholar 

  39. Huai-Yun H, Secrest DT, Mark KS, Carney D, Brandquist C, Elmquist WF, Miller DW (1998) Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem Biophys Res Comm 243: 816–820

    Article  PubMed  CAS  Google Scholar 

  40. Scism JL, Powers KM, Artru AA, Shen DD (1996) The effect of probenecid on extracellular and intracellular compartmentation of valproic acid in the rabbit brain as determined by microdialysis. Pharm Res 13: 5456

    Google Scholar 

  41. Adkison KDK, Ojemann GA, Rapport R, Dills RL, Shen DD (1995) Distribution of unsaturated metabolites of valproate in human and rat brain — pharmacologic relevance? Epilepsia 36: 772–782

    Article  PubMed  CAS  Google Scholar 

  42. Bowdle TA, Patel IH, Levy RH, Wilensky AJ (1980) Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 28: 486–492

    Article  PubMed  CAS  Google Scholar 

  43. Gomez Bellver MJ, Garcia Sanchez MJ, Alonso Gonzalez AC, Santo Buelga D, DominquezGil A (1993) Plasma protein binding kinetics of valproic acid over a broad dosage range: therapeutic implications. J Clin Pharmacol Ther 18: 191–197

    Article  CAS  Google Scholar 

  44. Granneman GR, Marriott TB, Wang SI, Sennello LT, Hagen NS, Sonders RC (1984) Aspects of the dose-dependent metabolism of valproic acid. In: RH Levy, WH Pitlick, M Eichelbaum, J Meijer (eds): Metabolism of antiepileptic drugs. Raven Press, New York, 97–104.

    Google Scholar 

  45. Battino D, Estienne M, Avanzini G (1995) Clinical pharmacokinetics of antiepileptic drugs in pediatric patients. Part I: phenobarbital, primidone, valproic acid, ethosuximide and mesuximide. Clin Pharmacokinet 29: 257–286

    Article  PubMed  CAS  Google Scholar 

  46. Plasse J-C, Revol M, Chabert G, Ducerf F (1979) Neonatal pharmacokinetics of valproic acid. In: D Schaaf, E van der Kleijn (eds): Progress in clinical pharmacy Amsterdam: Elsevier/North-Holland Biomedical Press, 247–252

    Google Scholar 

  47. Philbert A, Dam M (1982) The epileptic mother and her child. Epilepsia 23: 85–99

    Article  PubMed  CAS  Google Scholar 

  48. Klotz U, Rapp T, Müller WA (1978) Disposition of valproic acid in patients with liver disease. Eur J Clin Pharmacol 13: 55–60

    Article  PubMed  CAS  Google Scholar 

  49. Gugler R, Mueller G (1978) Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br J Clin Pharmacol 5: 441–446

    Article  PubMed  CAS  Google Scholar 

  50. Brewster D, Muir NC (1980) Valproate plasma protein binding in the uremic condition. Clin Pharmacol Ther 27: 76–82

    Article  PubMed  CAS  Google Scholar 

  51. Orr JM, Farrell K, Abbott FS, Ferguson S, Godolphin WJ (1983) The effects of peritoneal dialysis on the single dose and steady state pharmacokinetics of valproic acid in a uremic epileptic child. Eur J Clin Pharmcol 24: 387–390

    Article  CAS  Google Scholar 

  52. Anderson GD, Gidal BE, Hendryx RJ, Awan AB, Temkin NR, Wilensky AJ, Winn HR (1994) Decreased plasma protein binding of valproate in patients with acute head trauma. Br J Clin Pharmacol 37: 559–562

    Article  PubMed  CAS  Google Scholar 

  53. Anderson GD, Awan AB, Adams CA, Temkin NR, Winn, HR (1998) Increases in metabolism of valproate and excretion of 6β-hydroxycortisol in patients with traumatic brain injury. Br J Clin Pharmacol 45: 101–105

    Article  PubMed  CAS  Google Scholar 

  54. Löscher W, Nau H (1985) Pharmacological evaluation of various metabolites and analogues of valproic acid: anticonvulsant and toxic protencies in mice. Neuropharmacology 24: 427–435

    Article  PubMed  Google Scholar 

  55. Abbott FS, Acheampong AA (1988) Quantitative structure-anticonvulsant activity relationships of valproic acid, related carboxylic acids and tetrazoles. Neuropharmacology 27: 287–294

    Article  PubMed  CAS  Google Scholar 

  56. Baillie TA, Sheffels PR (1995) Valproic acid: chemistry and biotransformation. In: RH Levy, RH Mattson, BS Meldrum (eds): Antiepileptic drugs Raven Press, New York, 589–604

    Google Scholar 

  57. Löscher W, Nau H, Siemes H (1988) Penetration of valproate and its active metabolites into cerebrospinal fluid of children with epilepsy. Epilepsia 29: 311–316

    Article  PubMed  Google Scholar 

  58. Löscher W, Fisher JE, Nau H, Honack D (1989) Valproic acid in amygdala-kindled rats: alteration in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 250: 1067–1078

    PubMed  Google Scholar 

  59. Abbott F, Panesar S, Orr J, Burton R, Farrell K (1986b) Effect of carbamazepine on valproic acid metabolism. Epilepsia 27: 591

    Google Scholar 

  60. Scheyer RD, Mattson RH (1995) Valproic acid: interactions with other drugs. In: RH Levy, RH Mattson, BS Meldrum (eds): Antiepileptic drugs. Raven Press, New York, 621–631

    Google Scholar 

  61. Anderson GD, Yau MK, Gidal BE, Harris SJ, Levy RH, Lai AA, Wolf KB, Wargin WA, Dren AT (1996) Bidirectional interaction of valproate and lamotrigine in healthy subjects. Clin Pharmacol Ther 60: 145–156

    Article  PubMed  CAS  Google Scholar 

  62. Levy RH, Rettenmeier AW, Anderson GD, Wilensky AJ, Friel PN, Baillie TA, Acheampong A, Tor J, Guyot M, Loiseau P (1990) Effects of polytherapy with phenytoin, carbamazepine, and stiripentol on formation of 4-ene-valproate, a hepatotoxic metabolite of valproic acid. Clin Pharmacol Ther 48: 225–235

    Article  PubMed  CAS  Google Scholar 

  63. Kondo T, Otani K, Hirano T, Kaneko S, Fukushima Y (1990) The effects of phenytoin and carbamazepine on serum concentration of mono-unsaturated metabolites of valproic acid. Br J Clin Pharmacol 29: 116–119

    CAS  Google Scholar 

  64. Sadeque AJM, Fisher MB, Korzekwa KR, Gonzalez FJ, Rettie AE (1997) Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 283: 698–703

    PubMed  CAS  Google Scholar 

  65. Bryantt AE III, Dreifuss FE (1996) Valproic acid hepatic fatalities. III. US experience since 1986. Neurology 46: 465–469

    Article  Google Scholar 

  66. Wagner ML, Graves NM, Leppik IE, Remmel RP, Shumaker RC, Ward DL, Perhach JL (1994) The effect of felbamate on valproic acid disposition. Clin Pharmacol Ther 56: 494–502

    Article  PubMed  CAS  Google Scholar 

  67. Hooper WD, Franklin ME, Glue P, Banfield CR, Radwanski E, McLaughlin DB, McIntyre ME, Dickinson RG, Eadie MJ (1996) Effect of falbamate on valproic acid disposition in healthy volunteers: inhibition of β-oxidation. Epilepsia 37: 91–97

    Article  PubMed  CAS  Google Scholar 

  68. Samara EE, Granneman RG, Witt GF, Cavanaugh JH (1997) Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol 37: 442–450

    PubMed  CAS  Google Scholar 

  69. Lertora J, Rege A, Greenspan D, Akula S (1994) Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with immunodeficiency virus. Clin Pharmacol Ther 56: 272–278

    Article  PubMed  CAS  Google Scholar 

  70. Yuen AWC, Land G, Weatherley BC, Peck AW (1992) Sodium valproate acutely inhibits lamotrigene metabolism. Br J Clin Pharmacol 33: 511–513

    Article  PubMed  CAS  Google Scholar 

  71. Green MD, Bishop WP, Tephley TR (1995) Expressed human UGT-1.4 protein catalyzes the formation of quaternary ammonium-linked glucuronides Drug Metab Dispos 23: 299–302

    PubMed  CAS  Google Scholar 

  72. Hurst S, Labroo R, Carlson S, Mather G, Levy R (1997) In vitro inhibition profile of valproic acid for cytochrome P450. International Society for the Study of Xenobiotics. Hilton Head, South Carolina (abstract): 64

    Google Scholar 

  73. Bernus I, Dickinson RG, Hooper WD, Eadie MJ (1994) Inhibition of phenobarbitone Nglucosidation by valproate. Br J Clin Pharmacol 38: 411–416

    Article  PubMed  CAS  Google Scholar 

  74. Kerr BM, Rettie AW, Eddy AC, Loiseau P, Guyot M, Wilensky AJ, Levy RH (1989) Inhibition of human liver microsomal epoxide hydrolase by valproate and valpromide: in vitro/in vivo correlation. Clin Pharmacol Ther 46: 82–93

    Article  PubMed  CAS  Google Scholar 

  75. Pisani F, Caputo M, Fazio A, Oteri G, Russo M, Spina E, Perucca E, Bertilsson L (1990) Interaction of carbamazepine 10,11-epoxide, an active metabolite of carbamazepine, with valproate: a pharmacokinetic study. Epilepsia 31: 339–342

    Article  PubMed  CAS  Google Scholar 

  76. Robbins DK, Wedlund PJ, Kuhn R, Baumann RJ, Levy RH, Chang S-L (1990) Inhibition of epoxide hydrolase by valproic acid in epileptic patients receiving carbamazepine. Br J Clin Pharmacol 29: 759–762

    Article  PubMed  CAS  Google Scholar 

  77. Rambeck B, Salke-Treumann A, May T, Boenigk HE (1990) Valproic acid induced carbamazepine 10,11-epoxide toxicity in children and adolescents. Eur Neurol 30: 79–83

    Article  PubMed  CAS  Google Scholar 

  78. McKee PJ, Blacklaw J, Butler E, Gillham RA, Brodie MJ (1992) Variability and clinical relevance of the interaction between sodium valproate and carbamazepine in epileptic patients. Epilepsy Res 11: 193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Shen, D.D. (1999). Absorption, distribution, and excretion. In: Löscher, W. (eds) Valproate. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8759-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8759-5_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9761-7

  • Online ISBN: 978-3-0348-8759-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics