Skip to main content

Hyperalgesia from subcutaneous cytokines

  • Chapter
Cytokines and Pain

Abstract

Cytokines are proteins produced by cells in response to a variety of stimuli: they are released by their producer cells and act upon receptors on target cells. Cytokines may be produced by more than one cell type and in a number of tissues and may work in an autocrine, paracrine, or endocrine manner. All cytokines are small proteins (typically 5-30 kDa), some are glycoproteins, and some are synthesised as larger precursors which are cleaved to give the active molecule. As expected of agents that have a number of regulatory roles, cytokines are rarely produced at a constant rate but rather their production is induced (or suppressed) by specific stimuli to which the organism needs to respond. The lifetimes of cytokines are generally short and their destruction/clearance is usually a regulated process. Cytokines have essential roles in the control of cell proliferation, during embryonic development and in later life, and they are involved in regulating the immune response to foreign antigens on invading organisms. Essential processes such as cellular renewal and wound healing, the development of cellular and humoral immunity, and inflammatory responses all require participation of a range of cytokines. It is not surprising, therefore, that many diseases and conditions involving disruption of these processes are associated with altered regulation of cytokine production and action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henderson B, Poole S (1994) Modulation of cytokine function: therapeutic applications In: August JT, Anders MW, Murad F (eds):Advances in PharmacologyVol 25. Academic Press, London, 53–115

    Google Scholar 

  2. Ferreira SH, Lorenzetti BB, Bristow AF, Poole S (1988) Interleukin-1beta as a potent hyperalgesic agent antagonized by a tripeptide analogue.Nature334: 698–700

    Article  PubMed  CAS  Google Scholar 

  3. Schweizer A, Feige U, Fontana A, Muller K, Dinarello CA (1988) Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels.Agents Actions25: 246–251

    Article  PubMed  CAS  Google Scholar 

  4. Follenfant RL, Nakamura-Craig M, Henderson B, Higgs GA (1989) Inhibition by neu-ropeptides of interleukin-1beta-induced, prostaglandin-independent hyperalgesia.Br J Pharmacol98: 41–43

    Article  PubMed  CAS  Google Scholar 

  5. Ferreira SH, Lorenzetti BB, Correa FMA (1978) Central and peripheral antialgesicactions of aspirin-like drugs.Eur J Pharmacol53: 39–49

    Article  PubMed  CAS  Google Scholar 

  6. McMahon SB, Koltzenburg M (1990) Novel classes of nociceptors: beyond Sherrington.TINS13: 199

    PubMed  CAS  Google Scholar 

  7. Ferreira SH (1990) A classification of peripheral analgesics based upon their mode of action. In: Sandler M, Collins GM (eds):Migraine: Spectrum of ideas.Oxford University Press, Oxford, 59–72

    Chapter  Google Scholar 

  8. Moncada S, Ferreira SH, Vane JR (1975) Inhibition of prostaglandins biosynthesis as the mechanism of analgesia of aspirin-like drugs in the dog knee joint.Eur J Pharmacol31: 250–260

    Article  PubMed  CAS  Google Scholar 

  9. Ferreira SH, Nakamura M, Castro MSA (1978) The hyperalgesic effects of prostacyclin and prostaglandin E2.Prostaglandins16: 31–37

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura M, Ferreira SH (1987) A peripheral sympathetic component in inflammatory hyperalgesia.Eur J Pharmacol135: 145–153

    Article  PubMed  CAS  Google Scholar 

  11. Duarte IDG, Nakamura M, Ferreira SH (1988) Participation of the sympathetic system in acetic acid-induced writhing in mice.Brazilian J Med Biol Res21: 341–343

    CAS  Google Scholar 

  12. Coderre TJ, Abbott FV, Melzack R (1984) Effects of peripheral antisympathetic treatments in the tail-flick, formalin and autotomy tests.Pain18: 13–23

    Article  PubMed  CAS  Google Scholar 

  13. Wall PD, Gutnick M (1974) Ongoing activity in peripheral nerves: The physiology and pharmacology of impulses originating from a neuroma.Exp Neurol43: 580

    Article  PubMed  CAS  Google Scholar 

  14. Ferreira SH (1980) Are macrophages the body’s alarm cells?Agents Actions 10:229–230

    Article  Google Scholar 

  15. Bernheim HA, Gilbert TM, Stitt JT (1980) Prostaglandin E2 levels in third ventricular cerebrospinal fluid of rabbits during fever and changes in body temperature.J Physiol(Lond) 301: 69–78

    CAS  Google Scholar 

  16. Ferreira SH (1972) Aspirin-like drugs and analgesia.Nature New Biol240: 200–203

    Article  PubMed  CAS  Google Scholar 

  17. March CJ, Moseley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K et al. (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary cDNAs.Nature341: 641–646

    Article  Google Scholar 

  18. Lumpkin MD (1987) The regulation of ACTH secretion by IL-1. Science 238: 452–454

    Article  PubMed  CAS  Google Scholar 

  19. Morstyn G, Burgess AW (1988) Hemopoietic growth factors: a review.Cancer Res48: 5624–5637

    PubMed  CAS  Google Scholar 

  20. Stefferl A, Hopkins SJ, Rothwell NJ, Luheshi GN (1996) The role of TNF-alpha in fever: opposing actions of human and murine TNF-alpha and interactions with IL-beta in the rat.Br J Pharmacol118: 1919–1924

    Article  PubMed  CAS  Google Scholar 

  21. Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ (1995) Interleukin-1 beta contributes to the inflammation-induced increase in nerve-growth factor levels and inflammatory hyperalgesia.Br J Pharmacol115: 1265–1275

    Article  Google Scholar 

  22. Perkins MN, Kelly D, Davis AJ (1995) Bradykinin B1 and B2 receptor mechanisms and cytokine-induced hyperalgesia in the rat.Can J Physiol Pharmacol73: 832–836

    Article  PubMed  CAS  Google Scholar 

  23. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs.Nature231: 232–235

    CAS  Google Scholar 

  24. Dinarello CA (1994) Interleukin-1. In: August JT, Anders MW, Murad F (eds):Advances in PharmacologyVol 25. Academic Press, London, 21–51

    Google Scholar 

  25. Dinarello, CAD (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock.Chest112 (6 Suppl): 321S–329S

    Article  PubMed  CAS  Google Scholar 

  26. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1991) Interleukin-8 as a mediator of sympathetic pain.Br J Pharmacol104: 765–767

    Article  PubMed  CAS  Google Scholar 

  27. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia.Br J Pharmacol107: 660–664

    Article  PubMed  CAS  Google Scholar 

  28. Geng Y, Blanco FJ, Cornelisson M, Lotz M (1995) Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes.J Immunol155: 796–801

    PubMed  CAS  Google Scholar 

  29. Burch RM, Connor JR, Axelrod J (1993) Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.Proc Natl Acad Sci USA85: 6306–6309

    Article  Google Scholar 

  30. Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA Jr, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1.J Exp Med163: 1433–1450

    Article  PubMed  CAS  Google Scholar 

  31. Dinarello CA, Ikejima T, Warner SJ, Orencole SF, Lonnemann G, Cannon JG, Libby P (1987) Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbitsin vivoand in human mononuclear cellsin vitro.J Immunol139: 1902–1910

    PubMed  CAS  Google Scholar 

  32. Van Damme J, Opdenakker G, Simpson RJ, Rubira MR, Cayphas S, Vink A, Billiau A, Van Snick J (1987) Identification of the human 26-kD protein, interferon beta 2 (IFNbeta 2), as a B cell hybridoma/plasmacytoma growth factor induced by interleukin 1 and tumor necrosis factor.J Exp Med165: 914–919

    Article  PubMed  Google Scholar 

  33. Streiter RM, Kundel SL, Showell HJ, Remick DG, Phan SH, Ward PA, Marks RM (1989) Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-a, LPS, and IL-13.Science243: 1467–1469

    Article  Google Scholar 

  34. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF.Blood75: 40–47

    PubMed  CAS  Google Scholar 

  35. Tilg H Trehus E, Atkins MB, Dinarello CA, Mier J.W (1994) Interleukin-6 as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55.Blood83: 113–118

    Google Scholar 

  36. Miller AJ, Luheshi GN, Rothwell NJ, Hopkins SJ (1997). Local cytokine induction by LPS in the rat air pouch and its relationship to the febrile response.Am J Physiol272: R857–R861

    PubMed  CAS  Google Scholar 

  37. Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KB, Kenney JS, Lee AT, Kuo GC, Allison AC, Lowry SF et al. (1989) Antibodies to cachectin/tumor necrosis factor reduce interleukin 1beta and interleukin 6 appearance during lethal bacteremia.J Exp Med170: 1627–1633

    Article  PubMed  CAS  Google Scholar 

  38. Gershenwald JE, Fong YM, Fahey TJ, Galvano SE, Chizzonite R, Kilian PL, Lowry SF, Moldawer LL (1990) Interleukin 1 receptor blockade attenuates the host inflammatory response.Proc Natl Acad Sci USA87: 4966–4970

    Article  PubMed  CAS  Google Scholar 

  39. Woolf CJ, Allchorne A, Garabedian BS, Poole S (1997) Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha.Br J Pharmacol121: 417–424

    Article  PubMed  CAS  Google Scholar 

  40. Rothwell NJ (1991). Functions and mechanisms of interleukin 1 in the brain.Trends Pharmacol Sci12: 430–436

    Article  PubMed  CAS  Google Scholar 

  41. Armstrong D, Dry RML, Keele CA, Markham JW (1953) Observations on chemical excitants of cutaneous pain in man.J Physiol120: 326–351

    PubMed  CAS  Google Scholar 

  42. Lim RKS, Miller DG, Guzman F, Rodgers DW, Rogers RW, Wang SK, Chao PY, Shih TY (1967) Pain and analgesia evaluated by intraperitoneal bradykinin-evoked pain method in man.Clin Pharmacol Ther8: 521–542

    PubMed  CAS  Google Scholar 

  43. Sicuteri F, Franciullacci FM, Franchi G, Del Bianco PL (1965) Serotonin-bradykinin potentiation of the pain receptors in man.Life Sci4: 309–316

    Article  PubMed  CAS  Google Scholar 

  44. Ferreira SH, Lorenzetti BB, Poole S (1993) Bradykinin initiates cytokine mediated inflammatory hyperalgesia.Br J Pharmacol 110:1227–1231

    Article  PubMed  CAS  Google Scholar 

  45. Steranka LR, Dehaas CJ, Vavrek RJ, Stewart JM, Enna SJ, Snyder SH (1987) Antinociceptive effects of bradykinin antagonists.Eur J Pharmacol136: 261–262

    Article  PubMed  CAS  Google Scholar 

  46. Costello AH, Hargreaves KM (1989) Suppression of carrageenan hyperalgesia, hyperthermia and edema by a bradykinin antagonist.Eur J Pharmacol171: 259–263

    Article  PubMed  CAS  Google Scholar 

  47. Fujiyoshi T, Hayashi I, Oh-ishi S, Kuwashima M, Ilda H, Dozen M, Taniguchi N, Ikeda K, Ohnishi H (1989) Kaolin-induced pain for assessment of analgesic agents.Agents Actions27: 332–334

    Article  PubMed  CAS  Google Scholar 

  48. Chau TT, Lewin AC, Walter TL, Carlson RP, Weichman BM (1991) Evidence for a role of bradykinin in experimental pain models.Agents Actions34: 235–238

    Article  PubMed  CAS  Google Scholar 

  49. Beresford IJM, Birch PJ (1992) Antinociceptive activity of the bradykinin antagonist HOE 140 in rat and mouse.Br J Pharmacol105 (suppl): 1P–314P

    Article  Google Scholar 

  50. Tiffany CW, Burch RM (1989) Bradykinin stimulates tumour necrosis factor and interleukin-1 release from macrophages.FEBS Lett247: 189–192

    Article  PubMed  CAS  Google Scholar 

  51. Davis AJ, Perkins MN (1994) The involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in the rat.Br J Pharmacol113: 63–68

    Article  PubMed  CAS  Google Scholar 

  52. Dray A, Perkins M (1993) Bradykinin and inflammatory pain.Trends Neurosci16: 99–104

    Article  PubMed  CAS  Google Scholar 

  53. Steranka LR, Manning DC, Dehass CJ (1988) Bradykinin as pain mediator: receptors are localized to sensory neurons and antagonists have analgesic actions.Proc Natl Acad Sci USA85: 3245–3249

    Article  PubMed  CAS  Google Scholar 

  54. Nagy I, Pabla R, Matesz C, Dray A, Woolf CJ, Urban L (1993) Cobalt uptake enables identification of capsaicin-and bradykinin-sensitive subpopulations of rat dorsal root ganglion cellsin vitro.Neuroscience56: 241–246

    Article  PubMed  CAS  Google Scholar 

  55. Davis CL, Naeem S, Phagoo SB, Campbell EA, Urban L, Burgess GM (1996) B1 bradykinin receptors and sensory neurones.Br J Pharmacol118:1469–1476

    Article  PubMed  CAS  Google Scholar 

  56. Rothschild AM, Gascon LA (1966) Sulphuric esters of polysaccharides as activators of a bradykinin-forming system in plasma.Nature212: 1364

    Article  PubMed  CAS  Google Scholar 

  57. Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat.Eur J Pharmacol211: 81–86

    Article  PubMed  CAS  Google Scholar 

  58. Vannier E, Miller LC, Dinarello CA (1992) Co-ordinated anti-inflammatory effects of interleukin-4: Interleukin-4 suppresses interleukin-1 production but up-regulates gene expression and synthesis of interleukin-1 receptor antagonist.Proc Natl Acad Sci USA89: 4076–4080

    Article  PubMed  CAS  Google Scholar 

  59. Fenton MJ, Buras JA, Donelly RP (1992) IL-4 reciprocally regulates IL-1 and IL-1 receptor antagonist expression in human monocytes.J Immunol149: 1283–1288

    PubMed  CAS  Google Scholar 

  60. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.Science249: 1431–1433

    Article  PubMed  CAS  Google Scholar 

  61. Lauener RP, Goyert SM, Geha RS, Vercelli D (1990) Interleukin-4 down-regulates the expression of CD14 in normal human monocytes.Eur J Immunol20: 2375–2381

    Article  PubMed  CAS  Google Scholar 

  62. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse helper T cell IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones.J Exp Med170: 2081–2095

    Article  PubMed  CAS  Google Scholar 

  63. Zlotnik A, Moore KW (1991) Interleukin-10.Cytokine3: 366–371

    Article  PubMed  CAS  Google Scholar 

  64. Howard M, O’Garra A (1992) Biological properties of IL-10.Immunol Today13: 198–200

    Article  PubMed  CAS  Google Scholar 

  65. De Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, Tevelde A, Figdor C, Johnson K, Kastelein R, Yssel H, Devries J (1991) Interleukin-10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression.J Exp Med174: 915–925

    Article  PubMed  Google Scholar 

  66. Fiorentino DF, Zlotnik A, Mossmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages.J Immunol147: 3815–3822

    PubMed  CAS  Google Scholar 

  67. De Waal Malefyt R, Abrams J, Bennett B, Figdor CG, Devries JE (1991) Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.J Exp Med174: 1209–1220

    Article  PubMed  Google Scholar 

  68. Bogdan C, Vodovotz Y, NathanC (1991) Macrophage deactivation by interleukin-10.J Exp Med174: 1549–1555

    Article  PubMed  CAS  Google Scholar 

  69. Oswald IP, Wynn TA, Sher A, James,SL (1992) Interleukin-10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation.Proc Natl Acad Sci USA89: 8676–8680

    Article  PubMed  CAS  Google Scholar 

  70. Howard M, O’Garra A, Ishida H, De Waal Malefyt R, de Vries J (1992) Biological properties of interleukin 10.J Clin Immunol12: 239–247

    Article  PubMed  CAS  Google Scholar 

  71. Poole S, Cunha FQ, Selkirk S, Lorenzetti BB, Ferreira SH (1995) Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10.Br J Pharmacol115: 684–688

    Article  PubMed  CAS  Google Scholar 

  72. Mertz PM, Dewitt DL, Stelter-Stevenson G, Wahl LM (1994) Interleukin 10 suppression of monocyte prostaglandin H Synthase-2.J Biol Chem269: 21322–21329

    PubMed  CAS  Google Scholar 

  73. Flower RJ, Rothwell NJ (1994) Lipocortin-1: cellular mechanisms and clinical relevance.TiPS 15:71–76

    PubMed  CAS  Google Scholar 

  74. Relton JK, Strijbos PJ, O’Shaughnessy CT, Carey F, Forder RA, Tilders FJ, Rothwell NJ (1991) Lipocortin-1 is an endogenous inhibitor of ischaemic damage in the rat brain.J Exp Med174: 305–310

    Article  PubMed  CAS  Google Scholar 

  75. Perretti M, Ahluwalia A, Harris JG, Harris HJ, Wheller SK, Flower RJ (1996) Acute inflammatory response in the mouse: exacerbation by immunoneutralization of lipocortin-1.Br J Pharmacol117: 1145–1154

    Article  PubMed  CAS  Google Scholar 

  76. Perretti M, Ahluwalia A, Harris JG, Goulding NJ, Flower RJ (1993) Lipocortin-1 fragments inhibit neutrophil-dependent edema in the mouse.J Immunol151: 4306–4314

    PubMed  CAS  Google Scholar 

  77. Ferreira SH, Cunha FQ, Lorenzetti, B.B., Michelin MA, Perretti M, Flower RJ, Poole S (1997) Role of lipocortin-1 in the analgesic actions of glucocorticoids.Br J Pharmacol121: 883–888

    Article  PubMed  CAS  Google Scholar 

  78. Blackwell, GJ, Carnuccio, R, Dirosa, M, Flower, RJ, Parente, L, Perisco, P (1980) Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoid drugs.Nature287: 147–149

    Article  PubMed  CAS  Google Scholar 

  79. Hirata F, Schiffmann E, Venkatasubamanian K, Salomon D, Axelrod J (1980) A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids.Proc Natl Acad Sci USA 77:2533–2536

    Article  PubMed  CAS  Google Scholar 

  80. Waage A, Bakke O (1988) Glucocorticoids suppress the production of tumour necrosis factor by lipopolysaccharide-stimulated human monocytes.Immunology63: 299–302

    PubMed  CAS  Google Scholar 

  81. Lew W, Oppenheim JJ, Matsushima K (1988) Analysis of the suppression of IL-1 alpha and IL-1 beta production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone.J Immunol140: 1895–1902

    PubMed  CAS  Google Scholar 

  82. Barton BE, Jakaway JP, Smith SR, Siegel MI (1991) Cytokine inhibition by a novel steroid, mometasone furoate.Immunopharmacol Immunotoxicol13: 251–261

    Article  PubMed  CAS  Google Scholar 

  83. Seitz M, Dewald B, Gerber N, Baggiolini M (1991) Enhanced production of neutrophil-activating peptide-1 interleukin-8 in rheumatoid arthritis.J Clin Invest87: 463–469

    Article  PubMed  CAS  Google Scholar 

  84. Auphan N, Didonato JA, Rosette C, Helmberg A, Karin M (1995). Immunosuppression by glucocorticoids: inhibition of NF-xB activity through induction of Ix synthesis.Science270: 286–290

    Article  PubMed  CAS  Google Scholar 

  85. Scheinman RI, Gogswell PC, Lofquist AK, Baldwin Jr AS (1995) Role of transcriptional activation of 1xBa in mediation of immunosuppression by glucocorticoids.Science270: 283–286

    Article  PubMed  CAS  Google Scholar 

  86. Sterling EA, Barthelmäs R, Pfeuffer I, Schenk B, Zarius S, Swoboda R, Mercurio F, Karin M (1989) Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin-2 gene in T lymphocytes.EMBO J8: 465–473

    Google Scholar 

  87. Park J-H, Kaushansky K, Levitt L (1993) Transcriptional regulation of interleukin-3 in primary human lymphocytes.J Biol Chem268: 6299–6308

    PubMed  CAS  Google Scholar 

  88. Cockerill PN, Shannon MF, Bert AG, Ryan GR, Vadas MA (1993) The granulocyte-macrophage colony stimulating factor/interleukin-3 locus is regulated by an inducible cyclosporin A-sensitive enhancer.Proc Natl Acad Sci USA90: 2466–2470

    Article  PubMed  CAS  Google Scholar 

  89. Stein B, Baldwin AS, Ballard DW, Greene WC, Angel P, Herrlich P (1993) Cross-coupling of the NF-KB p65 and Fos-Jun transcription factors produces potentiated biological function.EMBO J12: 3879–3891

    PubMed  CAS  Google Scholar 

  90. Flower RJ, Blackwell GJ (1979) Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation.Nature278 (5703): 456–459

    Article  PubMed  CAS  Google Scholar 

  91. Lorenzetti BB, Ferreira SH (1985) Mode of analgesic action of dipyrone: direct antagonism of inflammatory hyperalgesia.Eur J Pharmacol114: 375–381

    Article  PubMed  CAS  Google Scholar 

  92. Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices.Eur J Pharmacol181: 323–326

    Article  PubMed  CAS  Google Scholar 

  93. Hua XY, Chen P, Fox A, Myers RR (1996) Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1beta and tumor necrosis factor-alpha.J Neurosci16: 4742–4748

    PubMed  CAS  Google Scholar 

  94. Davis AK, Perkins MN (1996) desArg9BK-induced mechanical hyperalgesia and analgesia in the rat: involvement of IL-1, prostaglandins and peripheral opioids.Br J Pharmacol Proceedings(Suppl) Dec 1996, 74P

    Google Scholar 

  95. Marceau F, Petitclerc E, Deblois D, Pradelles, Poubell PE (1991) Human interleukin-1 induces a rapid relaxation of the rabbit isolated mesenteric artery.Br J Pharmacol103: 1367–1372

    Article  PubMed  CAS  Google Scholar 

  96. Poole S, Bristow AF, Lorenzetti BB, Gaines Das RE, Smith TW, Ferreira SH, (1992). Peripheral analgesic activities of peptides related to alpha-MSH and interleukin-1 beta 193–195.Br J Pharmacol106: 489–492

    Article  PubMed  CAS  Google Scholar 

  97. Richards DB, Lipton JM (1984) Effect of alpha-MSH 11–13 (lysine-proline-valine) on fever in the rabbit.Peptides5: 815–817

    Article  PubMed  CAS  Google Scholar 

  98. Dinarello CA (1984) Interleukin-1.Rev Infect Dis6: 51–95

    Article  PubMed  CAS  Google Scholar 

  99. Hiltz ME, Lipton JM (1989) Anti-inflammatory activity of a COOH-terminal fragment of the neuropeptide a-MSH.Res Commun3: 2282–2284

    CAS  Google Scholar 

  100. Hiltz ME, Lipton JM (1990) Alpha-MSH peptides inhibit acute inflammation and contact sensitivity.Peptides11: 979–982

    Article  PubMed  CAS  Google Scholar 

  101. Deeter LB, Martin LW, Lipton JM (1989) Antipyretic properties of centrally administered alpha-MSH fragments in the rabbit.Peptides9: 1285–1288

    Article  Google Scholar 

  102. Safieh-Garabedian B, Kanaan SA, Jalakhian RH, Poole S, Jabbur SJ, Saade NE (1997) Hyperalgesia induced by low doses of thymulin injections: possible involvement of prostaglandin E2.J Neuroimmunol1997 73: 162–168

    Article  Google Scholar 

  103. Walker JM, Akil H, Watson SJ (1980) Evidence for homologous actions of pro-opiocortin products.Science 210:1247–1249

    Article  PubMed  CAS  Google Scholar 

  104. Ohkubo T, Shibata M, Takahashi H, Naruse S (1985) Naloxone prevents the analgesic action of alpha-MSH in mice.Experientia41: 627–628

    Article  PubMed  CAS  Google Scholar 

  105. Oluyomi AO, Poole S, Smith TW, Hart SL (1994) Antinociceptive activity of peptides related to interleukin-1 beta-(193–195), Lys-Pro-Thr.Eur J Pharmacol1994 258: 131–138

    Article  Google Scholar 

  106. Lyson K, Ceriani G, Takashima A, Catania A, Lipton JM (1994) Binding of anti-inflammatory alpha-melanocyte-stimulating-hormone peptides and proinflammatory cytokines to receptors on melanoma cells.Neuroimmunomodulation1994: 121–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Poole, S., de Queiroz Cunha, F., Ferreira, S.H. (1999). Hyperalgesia from subcutaneous cytokines. In: Watkins, L.R., Maier, S.F. (eds) Cytokines and Pain. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8749-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8749-6_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9756-3

  • Online ISBN: 978-3-0348-8749-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics