Skip to main content

Needle Microinjection: A Brief History

  • Chapter
Microinjection

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Since its inception in the early 1900’s (Barber, 1911), the technique of needle microinjection has become a prominent experimental approach in biological research. Cellular organelles, DNA and RNA, enzymes, structural proteins, metabolites, ions and antibodies are just some of the molecular and cellular elements that have been transposed from test tubes into living cells by needle injection. A simple search of the literature indicates the growing popularity of the technique, returning a few citations in the 1970’s, and thousands in the 1990’s. As a complementary approach to DNA transfection, and as one of only a few viable ways to introduce non-genetic, large molecules into living cells, microinjection is now routinely used to study many living cell systems. With an inherent immediacy, microinjection has facilitated a wide range of biological studies, some of which are described in this book. While numerous alternative “microinjection” tools have also been developed, such as vesicle fusion, scrape loading and electroporation, we will focus mainly on the versatility of the use of needles to facilitate cellular injection. Lastly we apologize to all of our colleagues whose exciting work could not be mentioned, and for any inadvertent errors of fact we may have made in this brief chapter. Many additional references can be found in the ensuing chapters, however, and we look forward to new innovations in the field from the readers of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Antman KH, Livingston DM (1980) Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody. Cell 19: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Barber MA (1911) A technique for the innoculation of bacteria and other substances into living cells. J. Infec. Diseases 8: 348–352.

    Article  Google Scholar 

  • Barnard EA, Bilbe G, Houamed K, Moss SJ, Van Renterghem C, Smart TG (1987) Functional expression in the Xenopus oocyte of messenger ribonucleic acids encoding brain neurotransmitter receptors: further characterisation of the implanted GABA receptor. Neuropharmacology 26: 837–844.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Sagi D, Feramisco JR (1985) Microinjection of the ras oncogene protein into PCI2 cells induces morphological differentiation. Cell 42: 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HR (1982) Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals. Embo Journal 1: 1583–1588.

    PubMed  CAS  Google Scholar 

  • Birchmeier C, Broek D, Wigler M (1985) Ras proteins can induce meiosis in Xenopus oocytes. Cell 43: 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME, Avarbock MR (1980) Translation of globin messenger RNA by the mouse ovum. Nature 283: 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R., Chen, H., Trumbauer, M., Senear, A., Warren, R., and Palmiter, R (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Constantini F, and Lacy E (1981) Introduction of a rabbit globin gene into the mouse germ line. Nature 294: 92–94.

    Article  Google Scholar 

  • Diacumakos EG, Gershey EL (1977) Uncoating and gene expression of simian virus 40 in CV-1 cell nuclei inoculated by microinjection. Journal of Virology 24(3): 903–906.

    PubMed  CAS  Google Scholar 

  • Feramisco JR (1979) Microinjection of fluorescently labeled alpha-actinin into living fibroblasts. Proc Natl Acad Sci USA 76: 3967–3971.

    Article  PubMed  CAS  Google Scholar 

  • Feramisco JR, Clark R, Wong G, Arnheim N, Milley R, McCormick F (1985) Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of ras protein. Nature 314: 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW (1984) Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Flickinger CJ (1974) Radioactive labeling of the Golgi apparatus by micro-injection of individual amebae. Experimental Cell Research 88: 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77: 7380–7384.

    Article  PubMed  CAS  Google Scholar 

  • Graessmann M, Graessman A (1976) “Early” simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci USA 73: 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Graessmann, A, Graessmann, M, Topp, W., Botchan, M (1979) Retransformation of a simian virus 40 revertant cell line, which is resistant to viral and DNA infections, by microinjection of viral DNA. J. Virol. 32: 989–994.

    PubMed  CAS  Google Scholar 

  • Graessmann A, Graessmann M (1971) The formation of melanin in muscle cells after direct transfer of RNA from Harding-Passeg melanoma cells. Hoppe-Seyler’s Z. Physiol. Chem. 352: 527–532.

    Article  CAS  Google Scholar 

  • Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1973-74) Gene expression in early animal development: the study of its control by the microinjection of amphibian eggs. Harvey Lectures: 49–9.

    Google Scholar 

  • Harbers K, Jahner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293: 540–542.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins SE (1969) Transmission of cytoplasmic determinants in amoebae by micro-injection of RNA-containing fractions. Nature, 224: 127–129.

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J. Cell Biol. 67: 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Jeon KW, Lorch IJ, Moran JF, Muggleton A, Danielli JF (1967) Cytoplasmic inheritance in amoebae: modification of response to antiserum by micro-injection of heterologous cytoplasmic homogenates. Experimental Cell Research 46: 615–619.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241: 558–564.

    Article  PubMed  CAS  Google Scholar 

  • Knowles JK (1974) An improved microinjection technique in Paramecium aurelia. Transfer of mitochondria conferring erythromycin-resistance. Experimental Cell Research 88: 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S (1974) Microinjection and transfer of cytoplasm in Paramecium. Experiments on the transfer of kappa particles into cells at different stages. Experimental Cell Research 88: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. CeU. Biol. 15: 1942–1952.

    CAS  Google Scholar 

  • Kreis TE, Winterhalter KH, Birchmeier W (1979) In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc Natl Acad Sci USA 76: 3814–3818.

    Article  PubMed  CAS  Google Scholar 

  • Krieg P, Strachan R, Wallis E, Tabe L, Colman A (1984) Efficient expression of cloned complementary DNAs for secretory proteins after injection into Xenopus oocytes. J. Molec. Biol. 180: 615–643.

    Article  PubMed  CAS  Google Scholar 

  • Krippl B, Ferguson B, Rosenberg M, Westphal H (1984) Functions of purified E1A protein microinjected into mammalian cells. Proc Natl Acad Sci USA 81: 6988–6982.

    Article  PubMed  CAS  Google Scholar 

  • Lacal JC, de la Pena P, Moscat, Garcia-Barreno P, Anderson PS, Aaronson SA (1987) Rapid stimulation of diacylglycerol production in Xenopus oocytes by microinjection of H-ras 21. Science 238: 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Lacy E, Roberts S, Evans EP, Burtenshaw MD, Costantini FD (1983) A foreign betaglobin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues. Cell 34: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Lin TP (1966) Microinjection of mouse eggs. Science 151: 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Lubbert H, Hoffman BJ, Snutch TP, van Dyke T, Levine AJ, Hartig PR, Lester HA, Davidson N (1987) cDNA cloning of a serotonin 5-HT1C receptor by electro-physiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci USA 84: 4332–4336.

    Article  PubMed  CAS  Google Scholar 

  • Mailer JL, Kemp BE, Krebs EG (1978) In vivo phosphorylation of a synthetic peptide substrate of cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 75: 248–251.

    Article  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329: 836–838.

    Article  PubMed  CAS  Google Scholar 

  • Mercer WE, Nelson D, Hyland JK, Croce CM, Baserga R (1983) Inhibition of SV40-induced cellular DNA synthesis by microinjection of monoclonal antibodies. Virology 127: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy LS, Smith MR, Stacey DW (1985) Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313: 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322: 826–828.

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Chen HY, Brinster RL (1982) Differential regulation of metallothionein-thymidine kinase fusion genes in transgenic mice and their offspring. Cell 29: 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Pasti G, Lacal JC, Warren BS, Aaronson SA, Blumberg PM (1986) Loss of mouse fibroblast cell response to phorbol esters restored by microinjected protein kinase C. Nature 324: 375–377.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Bach AW, Wozny M, Taleb O, Dal Toso R, Shih JC, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. Embo Journal 7: 4135–4140.

    PubMed  CAS  Google Scholar 

  • Riabowol K, Fink S, Gilman M, Walsh D, Goodman R, Feramisco JR (1988) The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer elements, Nature 336, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Ridley A, Hall A (1992) The small GTP ase Rho regulated the assembly of focal adhesions and stress fibers in response to growth factors. Cell 70: 389–389.

    Article  PubMed  CAS  Google Scholar 

  • Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Van de Woude GF (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Hinssen H, Franke WW, Jockusch BM (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39(1): 111–112.

    Article  PubMed  CAS  Google Scholar 

  • Soreq H (1985) The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. Crc Critical Reviews in Biochemistry 18: 199–238.

    Article  PubMed  CAS  Google Scholar 

  • Stacey DW, Allfrey VG (1977) Evidence for the autophagy of microinjected proteins in HeLA cells. J. Cell Biol. 75: 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Stacey DW, Allfrey VG (1976) Microinjection studies of duck globin messenger RNA translation in human and avian cells. Cell 9: 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Stacey DW, Watson T, Kung HF, Curran T (1987) Microinjection of transforming ras protein induces c-fos expression. Molecular and Cellular Biology 7: 523–527.

    PubMed  CAS  Google Scholar 

  • Stacey DW, Kung HF (1984) Transformation of NIH 3T3 cells by microinjection of Haras p21 protein. Nature 310: 508–511.

    Article  PubMed  CAS  Google Scholar 

  • Stanker LH, Gallick GE, Kloetzer WS, Murphy EC Jr, Arlinghaus RB (1983) P85: a gag-mos polyprotein encoded by tsllO Moloney murine sarcoma virus. J. Virology 45: 1183–1189.

    PubMed  CAS  Google Scholar 

  • Stuhmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. Embo Journal 8: 3235–44.

    PubMed  CAS  Google Scholar 

  • Tempel BL, Jan YN, Jan LY (1988) Cloning of a probable potassium channel gene from mouse brain. Nature 332: 837–839.

    Article  PubMed  CAS  Google Scholar 

  • Tjian R, Fey G, Graessmann A (1978) Biological activity of purified simian virus 40 T antigen proteins. Proc Natl Acad Sci USA 75: 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Rungger D (1982) Transcription of a Drosophila heat shock gene is heatinduced in Xenopus oocytes. Proc Natl Acad Sci USA 79: 1776–1780.

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF, Stewart TA, Mintz B (1981) The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci USA 78: 5016–5020.

    Article  PubMed  CAS  Google Scholar 

  • Wagner TE, Hoppe PC, Jollick JD, Scho UDR, Hodinka RL, Gault JB (1981) Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci USA 78: 6376–80.

    Article  PubMed  CAS  Google Scholar 

  • Wang YL, Taylor DL (1979) Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J. Cell Biol. 81: 672–679.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman WJ, Masui Y (1976) A cytoplasmic factor promoting oocyte maturation: its extraction and preliminary characterization. Science 191: 1266–1268.

    Article  PubMed  CAS  Google Scholar 

  • Wilson IB, Bolton E, Cuttler RH (1972) Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers. J. Embryol. Exp. Morphol. 27: 467–469.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Feramisco, J., Perona, R., Lacal, J.C. (1999). Needle Microinjection: A Brief History. In: Lacal, J.C., Feramisco, J., Perona, R. (eds) Microinjection. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8705-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8705-2_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6019-1

  • Online ISBN: 978-3-0348-8705-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics