Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Variations in the local tsunami wave field are examined in relation to heterogeneous slip distributions that are characteristic of many shallow subduction zone earthquakes. Assumptions inherent in calculating the coseismic vertical displacement field that defines the initial condition for tsunami propagation are examined. By comparing the seafloor displacement from uniform slip to that from an ideal static crack, we demonstrate that dip-directed slip variations significantly affect the initial cross-sectional wave profile. Because of the hydrodynamic stability of tsunami wave forms, these effects directly impact estimates of maximum runup from the local tsunami. In most cases, an assumption of uniform slip in the dip direction significantly underestimates the maximum amplitude and leading wave steepness of the local tsunami. Whereas dip-directed slip variations affect the initial wave profile, strike-directed slip variations result in wavefront-parallel changes in amplitude that are largely preserved during propagation from the source region toward shore, owing to the effects of refraction. Tests of discretizing slip distributions indicate that small fault surface elements of dimensions similar to the source depth can acceptably approximate the vertical displacement field in comparison to continuous slip distributions. Crack models for tsunamis generated by shallow subduction zone earthquakes indicate that a rupture intersecting the free surface results in approximately twice the average slip. Therefore, the observation of higher slip associated with tsunami earthquakes relative to typical subduction zone earthquakes of the same magnitude suggests that tsunami earthquakes involve rupture of the seafloor, whereas rupture of deeper subduction zone earthquakes may be imbedded and not reach the seafloor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Estimate of tsunami run-up heights from earthquake magnitudes. In Tsunami: Progress in Prediction, Disaster Prevention and Warning (eds. Tsuchiya, N., and Shuto, Y.) (Kluwer Academic Publishers, Dordrecht 1995) pp. 21–35.

    Google Scholar 

  • Baptista, A. M., Priest, G. R., and Murty, T. S. (1993), Field Survey of the 1992 Nicaragua Tsunami, Marine Geodesy 16, 169–203.

    Article  Google Scholar 

  • Ben-Zion, Y., and Rice, J. R. (1995), Slip Patterns and Earthquake Populations along Different Classes of Faults in Elastic Solids, J. Geophys. Res. 100,12, 959–12,983.

    Google Scholar 

  • Bilby, B. A., and Eshelby, J. D., Dislocations and the theory of fracture. In Fracture, vol. I (ed. Liebowitz, H.) (Academic Press, New York 1969) pp. 99–182.

    Google Scholar 

  • Boatwright, J., and Cocco, M. (1996), Frictional Constrains on Crustal Faulting, J. Geophys. Res. 101,13, 895–13,909.

    Google Scholar 

  • Boore, D. M., and Dunbar, W. S. (1977), Effect of the Free Surface on Calculated Stress Drops, Bull. Seismol. Soc. Am. 67, 1661–1664.

    Google Scholar 

  • B&ĂĽRGMANN, R., Pollard, D. D., and Martel, S. J. (1994), Slip Distribution on Faults: Effects of Stress Gradients, Inelastic Deformation, Heterogeneous Host-rock Stiffness, and Fault Interaction, J. Struct. Geol. 16, 1675–1690.

    Article  Google Scholar 

  • Cochard, A., and Madariaga, R. (1996), Complexity of Seismicity due to Highly Rate-dependent Friction, J. Geophys. Res. 101,25, 321–25,336.

    Google Scholar 

  • Cowie, P. A., and Scholz, C. H. (1992), Physical Explanation for the Displacement-length Relationship of Faults Using a Post-yield Fracture Mechanics Model, J. Struct. Geol. 14, 1133–1148.

    Article  Google Scholar 

  • Cowie, P. A., and SHIPTON, Z. K. (1998), Fault Tip Displacement Gradients and Process Zone Dimensions, J. Struct. Geol. 20, 983–997.

    Article  Google Scholar 

  • Das, S. (1981), Three-dimensional Rupture Propagation and Implications for the Earthquake Source Mechanism, Geophys. J. R. Astron. Soc. 67, 375–393.

    Article  Google Scholar 

  • Das, S., and Aki, K. (1977), Fault Plane with Barriers: A Versatile Earthquake Model, J. Geophys. Res. 82, 5648–5670.

    Article  Google Scholar 

  • Das, S., and Suhadolc, P. (1996), On the Inverse Problem for Earthquake Rupture: The Haskell-type Source Model, J. Geophys. Res. 101, 5725–5738.

    Article  Google Scholar 

  • Dieterich, J. H. (1979), Modeling of Rock Friction, 1, Experimental Results and Constitutive Equations, J. Geophys. Res. 84, 2161–2168.

    Article  Google Scholar 

  • Dmowska, R., and Kostrov, B. V. (1973), A Shearing Crack in a Semi-space under Plane Strain Conditions, Archives of Mechanics 25, 421–440.

    Google Scholar 

  • Dmowska, R., and Rice, J. R., Fracture theory and its seismological applications.In Continuum Theories in Solid Earth Physics (ed. Teisseyre, R.) (PWN-Polish Scientific Publishers, Warsaw 1986) pp. 187–255.

    Google Scholar 

  • Erdogan, F., and Gupta, G. D. (1972), On the Numerical Solution of Singular Integral Equations, Quart. J. Mech. Appl. Math. 29, 4–9.

    Google Scholar 

  • Freund, L. B., and Barnett, D. M. (1976), A Two-dimensional Analysis of Surface Deformation due to Dip-slip Faulting, Bull. Seismol. Soc. Am. 66, 667–675.

    Google Scholar 

  • Fukuyama, E., and Madariaga, R. (1995), Integral Equation Method for Plane Crack with Arbitrary Shape in 3-D Elastic Medium, Bull. Seismol. Soc. Am. 85, 614–628.

    Google Scholar 

  • Geist, E. L. (1998), Local tsunamis and earthquake source parameters. In Tsunamigenic Earthquakes and their Consequences (eds. Dmowska, R., and Saltzman, B) Advances in Geophysics 39, 117–209.

    Google Scholar 

  • Ida, Y. (1973), Stress Concentration and Unsteady Propagation of Longitudinal Shear Cracks, J. Geophys. Res. 78, 3418–3429

    Article  Google Scholar 

  • IhmlĂ©, P. F. (1996), Monte Carlo Slip Conversion in the Frequency Domain: Application to the 1992 Nicaragua Slow Earthquake, Geophys. Res. Lett. 23, 913–916.

    Article  Google Scholar 

  • Jeyakumaran, M., Rudnicki, J. W., and Keer, L. M. (1992), Modeling Slip Zones with Triangular Dislocation Elements, Bull. Seismol. Soc. Am. 82, 2153–2169.

    Google Scholar 

  • Kajiura, K. (1963), The Leading Wave of a Tsunami, Bull. Earthquake Res. Inst. 41, 535–571.

    Google Scholar 

  • Kajiura, K. (1981), Tsunami Energy in Relation to Parameters of the Earthquake Fault Model, Bull. Earthquake Res. Inst. 56, 415–440

    Google Scholar 

  • Kanamori, H. (1972), Mechanism of Tsunami Earthquakes, Phys. Earth Planet. Interiors 6, 346–359.

    Article  Google Scholar 

  • Kanamori, H., and Kikuchi, M. (1993), The 1992 Nicaragua Earthquake: A Slow Tsunami Earthquake Associated with Subducted Sediments, Nature 361, 714–716.

    Article  Google Scholar 

  • Knopoff, L. (1958), Energy Release in Earthquakes, Geophys. J. 1, 44–52.

    Article  Google Scholar 

  • Kostrov, B. V., and Das, S. (1984), Evaluation of Stress and Displacement Fields due to an Elliptical Plane Shear Crack, Geophys. J. Royal Astr. Soc. 77, 915–933.

    Article  Google Scholar 

  • Ma, X. Q., and Kusznir, N. J. (1992), 3-D Subsurface Displacement and Strain Fields for Faults and Fault Arrays in a Layered Elastic Half-space, Geophys. J. Int.111, 542–558.

    Article  Google Scholar 

  • Mc Tigue, D. F., and Segall, P. (1988), Displacements and Tilts from Dip-slip Faults and Magma Chambers beneath Irregular Surface Topography, Geophys. Res. Lett. 16, 601–604.

    Article  Google Scholar 

  • Okada, Y. (1985), Surface Deformation due to Shear and Tensile Faults in a Half-space, Bull. Seismol. Soc. Am. 75, 1135–1154.

    Google Scholar 

  • Okal, E. A. (1988), Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards 1, 67–96.

    Article  Google Scholar 

  • Pelayo, A. M., and Wiens, D. A. (1992), Tsunami Earthquakes: Slow Thrust-faulting Events in the Accretionary Wedge, J. Geophys. Res. 97, 15,321–15,337.

    Article  Google Scholar 

  • Piatanesi, A., Tinti, S., and Gavagni, I. (1996), The Slip Distribution of the 1992 Nicaragua Earthquake from Tsunami Run-up Data, Geophys. Res. Lett. 23, 37–40.

    Article  Google Scholar 

  • Reid, R. O., and Bodine, B. R. (1968), Numerical Model for Storm Surges in Galveston Bay, J. Waterway Harbor Div. 94, 33–57.

    Google Scholar 

  • Ice, J. R.,Mathematical analysis in the mechanics of fracture. In Fracture, vol. II (ed. H. Liebowitz) (Academic Press, New York 1968) pp. 191–311.

    Google Scholar 

  • Rudnicki, J. W., and Wu, M. (1995), Mechanics of Dip-slip Faulting in an Elastic Half-space, J. Geophys. Res. 100,22, 173–22,186.

    Google Scholar 

  • Rybicki, K., Dislocations and their geophysical application. In Continuum Theories in Solid Earth Physics (ed. Teisseyre, R.) (PWN-Polish Scientific Publishers, Warsaw 1986) pp. 18–186.

    Google Scholar 

  • Satake, K. (1993), Depth Distribution of Coseismic Slip along the Nankai Trough, Japan, from Joint Inversion of Geodetic and Tsunami Data, J. Geophys. Res. 98, 4553–4565.

    Article  Google Scholar 

  • Savage, J. C. (1998), Displacement Field for an Edge Dislocation in a Layered Half-space, J. Geophys. Res. 103, 2439–2446.

    Article  Google Scholar 

  • Savage, J. C., and Hastie, L. M. (1966), Surface Deformation Associated with Dip-slip Faulting, J. Geophys. Res. 71, 4897–4904.

    Article  Google Scholar 

  • Shimazaki, K., Small and large earthquakes: The effects of the thickness of seismogenie layer and the free surface. In Earthquake Source Mechanics (eds., Das, S., Boatwright, J., and Scholz, C.) (American Geophysical Union, Washington, D.C. 1986) pp. 209–216.

    Chapter  Google Scholar 

  • Singh, S. J., Punia, M., and Rani, S. (1994), Crustal Deformation due to Non-uniform Slip along a Long Fault, Geophys. J. Int. 118, 411–427.

    Article  Google Scholar 

  • Stuart, W. D. (1988), Forecast Model for Great Earthquakes at the Nankai Trough Subduction Zone, Pure appl. geophys. 126, 619–641.

    Article  Google Scholar 

  • Stoker, J. J., Water Waves (Interscience Publishers Inc., New York 1957) 567 pp.

    Google Scholar 

  • Synolakis, C. E. (1987), The Runup of Solitary Waves, J. Fluid Mech. 185, 523–545.

    Article  Google Scholar 

  • Tada, T., and Yamashita, T. (1997), Non-hyper singular Boundary Integral Equations for Two-dimensional Non-planar Crack Analysis, Geophys. J. Int. 130, 269–282.

    Article  Google Scholar 

  • Tadepalli, S., and Synolakis, C. E. (1994), The Run-up of N Waves on Sloping Beaches, Proc. R. Soc. Lond. A 445, 99–112.

    Article  Google Scholar 

  • Tadepalli, S., and Synolakis, C. E. (1996), Model for the Leading Waves of Tsunamis, Phys. Rev. Lett. 77, 2141–2144.

    Article  Google Scholar 

  • Tanioka, Y., and Satake, K. (1996), Tsunami Generation by Horizontal Displacement of Ocean Bottom, Geophys. Res. Lett. 23, 861–864.

    Article  Google Scholar 

  • Thatcher, W. (1990), Order and Diversity in the Modes of Circum-Pacific Earthquake Recurrence, J. Geophys. Res. 95, 2609–2623.

    Article  Google Scholar 

  • Togashi, H., Shoreline wave height and land run-up height of tsunamis on uniformly sloping beaches. In Tsunamis: Their Science and Engineering (eds. Iida, J., and Iwasaki, T.) (Terra Science Pub. Co., Tokyo/Reidel, Dordrecht 1983) pp. 495–509.

    Chapter  Google Scholar 

  • Tse, S. T., and Rice, J. R. (1986), Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties, J. Geophys. Res. 91, 9452–9472.

    Article  Google Scholar 

  • Tsuji, Y., Imamura, F., Matsutomi, H., Synolakis, C. E., Nanang, P. T., Jumadi, S., Harada, S., Han, S. S., Arai, K., and Cook, B. (1995), Field Survey of the East Java Earthquake and Tsunami of June 3, 1994, Pure appl. geophys. 144, 839–854.

    Article  Google Scholar 

  • Weertman, J. (1964), Continuum Distribution of Dislocations on Faults with Finite Friction, Bull. Seismol. Soc. Am. 54, 1035–1058.

    Google Scholar 

  • Wu, M., Rudnicki, J. W., Kuo, C. H., and Keer, L. M. (1991), Surface Deformation and Energy Release Rates for Constant Stress Drop Slip Zones in an Elastic Half-space, J. Geophys. Res. 96,16, 509–16,524.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Geist, E.L., Dmowska, R. (1999). Local Tsunamis and Distributed Slip at the Source. In: Sauber, J., Dmowska, R. (eds) Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8679-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8679-6_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6146-4

  • Online ISBN: 978-3-0348-8679-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics