Skip to main content

Notes on the definition and nomenclature of tandemly repetitive DNA sequences

  • Chapter
DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

Summary

Tandemly repetitive DNA is a major component of all eukaryotic genomes. This fact has been known for almost 30 years and research on this class of DNA is still being done. Its biology and evolution are therefore now becoming fairly well understood. DNA-fingerprint techniques rely very much on this knowledge. However, the large amount of research on these sequences has inevitably led to a large number of different concepts and theories about their nature. This has also resulted in some confusion as to the nomenclature. The following notes are intended to resolve this confusion somewhat and to give some definitions for the major classes of tandemly repetitive DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell GI, Selby MJ, Rutter WJ (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35

    Article  Google Scholar 

  • Birnboim HC, Straus NA (1975) DNA from eukaryotic cells contains unusually long pyrimidine sequences. Can J Biochem 53: 640–643

    Article  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161: 529–540

    Article  Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49: 746–756

    Google Scholar 

  • Epplen JT, McCarrey JR, Sutou S, Ohno S (1982) Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male specific putative mRNA in the mouse. Proc Natl Acad Sci USA 79: 3798–3802

    Article  Google Scholar 

  • Epplen JT, Ammer H, Epplen C, Kammerbauer C, Mitreiter R, Roewer L, Schwaiger W, Steimle V, Zischler H, Albert E, Andreas A, Beyermann B, Meyer W, Buitkamp J, Nanda I, Schmid M, Nürnberg P, Pena SDJ, Pöche H, Sprecher W, Schartl M, Weising K, Yassouridis A (1991) Oligo-nucleotide fingerprinting using simple repeat motifs: a convenient ubiquitously applicable method to detect hypervariability for multiple purposes. In Burke T, Dolf G, Jeffreys AJ, Wolff R (Eds), DNA Fingerprinting: Approaches and Applications (pp. 50–69). Birkhäuser Verlag, Basel

    Chapter  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci USA 79: 6465–6469

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SW (1985a) Hypervariable minisatellite regions in human DNA. Nature 314: 67–73

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific fingerprints of human DNA. Nature 316: 76–79

    Article  Google Scholar 

  • Jeffreys AJ, Neumann R, Wilson V (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60: 473–485

    Article  Google Scholar 

  • Jeffreys AJ, Royle NJ, Patel J, Armour AL, MacLeod A, Collick A, Gray IC, Neumann R, Gibbs M, Crosier M, Hill M, Signer E, Monckton D (1991a). Principles and recent advances in human DNA fingerprinting. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (Ed.), DNA Fingerprinting: Approaches and Applications (pp. 1–19) Basel: Birkhäuser Verlag

    Chapter  Google Scholar 

  • Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991b). Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209

    Article  Google Scholar 

  • Kreitman M (1983) Nucleotide polymorphism at the Adh locus of Drosophila melanogaster. Nature 304: 412–417

    Article  Google Scholar 

  • Levinson G, Marsh JL, Epplen JT, Gutman GA (1985) Cross-hybridizing snake satellite, Drosophila and mouse DNA sequences may have arisen independently. Mol Biol Evol 2: 494–504

    Google Scholar 

  • Levinson G, Gutman GA (1987a) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4: 203–221

    Google Scholar 

  • Levinson G, Gutman GA (1987b) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15: 5323–5338

    Article  Google Scholar 

  • Lewin B (1990) Genes IV, Oxford University Press, Oxford

    Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44: 397–401

    Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987a) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622

    Article  Google Scholar 

  • Nakamura Y, Julier C, Wolff R, Holm T, O’Connell P, Leppert M, White R (1987b) Characterization of a human “midisatellite ”sequence. Nucleic Acids Res 15: 2537–2547

    Article  Google Scholar 

  • Royle NJ, Clarkson RE, Wong Z, Jeffreys AJ (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352–360

    Article  Google Scholar 

  • Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  Google Scholar 

  • Smillie F, Bains W (1990) Repetition structure of mammalian nuclear DNA. J Theor Biol 142: 463–471

    Article  Google Scholar 

  • Smith G (1976) Evolution of repeated DNA sequences by unequal crossing over. Science 191: 528–535

    Article  Google Scholar 

  • Stephan W (1989) Tandem repetitive noncoding DNA: forms and forces. Mol Biol Evol 6: 198–212

    Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127–4138

    Article  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652–656

    Article  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463–6471

    Article  Google Scholar 

  • Vergnaud G, Mariat D, Zoroastro M, Lauthier V (1991) Detection of single and multiple polymorphic loci by synthetic tandem repeats of short oligonucleotides. Electrophoresis 12: 134–140

    Article  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44: 388–396

    Google Scholar 

  • Zischler H, Kammerbauer C, Studer R, Grzeschik KH, Epplen J (1992) Dissecting (CAC)5/ (GTG)5 multilocus fingerprints from man into individual locus-specific hypervariable components. Genomics 13: 983–990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Tautz, D. (1993). Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics