Skip to main content

The role of metalloproteinases on blood-brain barrier breakdown after ischemic stroke

  • Chapter
Inflammation and Stroke

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The role of the blood-brain barrier (BBB) is to preserve the neuronal microenvironment, which is essential for the normal function of the brain. As a functional entity, BBB includes several cell types and the extracellular matrix (ECM). Microvascular endothelial cells coupled by tight junctions and featuring only a very few endocytotic vesicles are responsible for the permeability properties of the BBB [1]. Although in discontinuous contact with endothelial cells through their end feet, astrocytes seem also to actively participate in BBB phenotype [2]. Similarly, pericytes have been shown to change endothelial behavior [3–5>]. Finally, the endothelial basal lamina represents the non-cellular component of BBB. Produced by endothelial cells, the basal lamina is a specialized ECM composed of type IV collagen, fibronectin, laminin and various proteoglycans [6]. The ECM components are connected to endothelial cells via integrins and may regulate distinct biological events such as cellular differentiation, survival, morphology, adhesion and gene expression [7–10]. When BBB integrity is lost, inflammatory cells and fluid penetrate the brain, causing vasogenic edema and cell death [11, 12]. BBB permeability properties are challenged in various brain pathologies including ischemic stroke and several mechanisms of BBB disruption have been considered, involving bradykinin [13] other proinflammatory mediators [14] and oxygen free radicals [15, 16>].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reese TS, Karnowsky MJ (1967) Fine ultrastructural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217

    Article  PubMed  CAS  Google Scholar 

  2. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325: 253–257

    Article  PubMed  CAS  Google Scholar 

  3. Larson DM, Carson MP, Haudenschild CC (1987) Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc Res 38: 184–199

    Article  Google Scholar 

  4. Fujimoto K (1995) Pericyte-endothelial gap junctions in developing rat cerebral capillaries. Anat Rec 242: 562–565

    Article  PubMed  CAS  Google Scholar 

  5. Antonelli-Orlidge A, Saunders K, Smith SR, D’Amor PA (1989) An activated form of transforming growth factor p is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548

    Article  PubMed  CAS  Google Scholar 

  6. Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4: 1577–1590

    PubMed  CAS  Google Scholar 

  7. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276: 1425–1428

    Article  PubMed  CAS  Google Scholar 

  8. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94: 849–854

    Article  PubMed  CAS  Google Scholar 

  9. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164

    Article  PubMed  CAS  Google Scholar 

  10. Ingber DE, Folkman J (1989) How does extracellular matrix control capillary morphogenesis. Cell 58: 803–805

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Chopp M, Bodzin G (1992) Neutropenia reduces the volume of cerebral infarct after transient middle cerebral artery occlusion in the rat. Neurosci Res Comm 11: 93–99

    Google Scholar 

  12. Fishman RA (1975) Brain edema. N Engl J Med 293: 706–711

    Article  PubMed  CAS  Google Scholar 

  13. Wahl M, Unterberg A, Baethmann A, Schilling L (1988) Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 8: 621–634

    Article  PubMed  CAS  Google Scholar 

  14. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20: 131–147

    Article  PubMed  CAS  Google Scholar 

  15. Chan PH, Fishman RA, Schmidley JW, Chen SF (1984) Release of polyunsaturated fatty acids from phospholipids and alteration of brain membrane integrity by oxygen-derived free radicals. J Neurosci Res 12: 595–605

    Article  PubMed  CAS  Google Scholar 

  16. Chan PH, Schmidley JW, Fishman RA, Longar SM (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34: 315–320

    Article  PubMed  CAS  Google Scholar 

  17. Robert AM, Godeau G (1974) Action of proteolytic and glycolytic enzymes on the permeability of the blood-brain barrier. Biomedicine 21: 36–39

    PubMed  CAS  Google Scholar 

  18. Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stetler-Stevenson WG (1992) TIMP-2 reduces proteolytic opening of blood brain barrier by type IV collagenase. Brain Res 576: 203–207

    Article  PubMed  CAS  Google Scholar 

  19. Armao D, Kornfeld M, Estrada EY, Grossetete M, Rosenberg GA (1997) Neutral pro-teases and disruption of the blood-brain barrier in rat. Brain Res 767: 259–264

    Article  PubMed  CAS  Google Scholar 

  20. Hamann GF, Okada Y, Fitridge R, Del Zoppo GJ (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26: 2120–2126

    Article  PubMed  CAS  Google Scholar 

  21. Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739: 88–96

    Article  PubMed  CAS  Google Scholar 

  22. Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, Chan PH (1999) Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab 19: 1020–1028

    Article  PubMed  CAS  Google Scholar 

  23. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17: 4180–4189

    PubMed  CAS  Google Scholar 

  24. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29: 2189–2195

    Article  PubMed  CAS  Google Scholar 

  25. Hamann GF, Okada Y, Del Zoppo GJ (1996) Hemorrhagic transformation and microvascular integrity during focal cerebral ischemikeperfusion. J Cereb Blood Flow Metab 16: 1373–1378

    Article  PubMed  CAS  Google Scholar 

  26. Migita K, Eguchi K, Kawabe Y, Ichinose Y, Tsukada T, Aoyagi T, Nakamura H, Nagataki S (1996) TNF-alpha-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology 89: 553–557

    Article  PubMed  CAS  Google Scholar 

  27. Nikkari ST, Hoyhtya M, Isola J, Nikkari T (1996) Macrophages contain 92-kd gelatinase (MMP-9) at the site of degenerated internal elastic lamina in temporal arteritis. Am J Pathol 149: 1427–1433

    PubMed  Google Scholar 

  28. Clements JM, Cossins JA, Wells GM, Corkill DJ, Helfrich K, Wood LM, Pigott R, Stabler G, Ward GA, Gearing AJ et al (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74: 85–94

    Article  PubMed  CAS  Google Scholar 

  29. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152: 729–741

    PubMed  CAS  Google Scholar 

  30. Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16: 7910–7919

    PubMed  CAS  Google Scholar 

  31. Gottschall PE, Yu X (1995) Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64: 1513–1520

    Article  PubMed  CAS  Google Scholar 

  32. Gottschall PE, Yu X, Bing B (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42: 335–342

    Article  PubMed  CAS  Google Scholar 

  33. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29: 1020–1030

    Article  PubMed  CAS  Google Scholar 

  34. Oh LYS, Larsen PH, Krekoski CA, Edwards DR, Donovan F, Werb Z, Yong VW (1999) Matrix metalloproteinase-9/Gelatinase B is required for process outgrowth by oligodendrocytes. J Neurosci 19: 8464–8475

    PubMed  CAS  Google Scholar 

  35. Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996) Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16: 360–366

    Article  PubMed  CAS  Google Scholar 

  36. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20: 1681–1689

    Article  PubMed  CAS  Google Scholar 

  37. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH (1999) Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842: 92–100

    Article  PubMed  CAS  Google Scholar 

  38. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19: 624–633

    Article  PubMed  CAS  Google Scholar 

  39. Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23: 406–415

    Article  PubMed  CAS  Google Scholar 

  40. Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238: 53–56

    Article  PubMed  CAS  Google Scholar 

  41. Fridman R, Toth M, Pena D, Mobashery S (1995) Activation of progelatinase B (MMP9) by gelatinase A (MMP-2). Cancer Res 55: 2548–2555

    PubMed  CAS  Google Scholar 

  42. Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T (1992) Matrix metalloproteinase 9 (92 kDa gelatinase/type IV collagenase) from HT 1080 human firborsarcoma cells. Purification and activation of the precursor and enzymatic properties. J Biol Chem 267: 21712–21719

    PubMed  CAS  Google Scholar 

  43. Strongin AY, Marmer BL, Grant GA, Goldberg GI (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 268: 14033–14039

    PubMed  CAS  Google Scholar 

  44. Strongin AY, Collier Y, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. J Biol Chem 270: 5331–5338

    Article  PubMed  CAS  Google Scholar 

  45. Willenbrock F, Murphy G (1994) Structure-function relationships in the tissue inhibitors of metalloproteinases. Am J Respir Crit Care Med 150: S165–S170

    PubMed  Google Scholar 

  46. Goldberg GI, Marmer BL, Grant JA, Eisen AZ, Wilhelm S, He C (1989) Human 72k type IV collagenase forms a complex with a tissue inhibitor of metalloproteinase designed TIMP-2. Proc Natl Acad Sci USA 86: 8207–8211

    Article  PubMed  CAS  Google Scholar 

  47. Bergmann U, Tuuttila A, Stetler-Stevenson WG, Tryggvason K (1995) Autolytic activation of recombinant human 72 kilodalton type IV collagenase. Biochemistry 34: 2819–2825

    Article  PubMed  CAS  Google Scholar 

  48. Ingber DE, Madri JA, Folkman J (1986) A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119: 1768–1775

    Article  PubMed  CAS  Google Scholar 

  49. Clark ET, Desai TR, Hynes KL, Gewertz BL (1995) Endothelial cell response to hypoxia-reoxygenation is mediated by IL-1. ???? 58: 675–681

    PubMed  CAS  Google Scholar 

  50. Liu T, McDonnell PC, Young PR, White RF, Siren AL, Hallenbeck JM, Barone FC, Feurestein GZ (1993) Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke 24: 1746–1750

    Article  PubMed  CAS  Google Scholar 

  51. Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JD (1999) Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 19: 1099–1108

    Article  PubMed  CAS  Google Scholar 

  52. Yang GY, Liu XH, Kadoya C, Zhao YJ, Mao Y, Davidson BL, Betz AL (1998) Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. J Cereb Blood Flow Metab 18: 840–847

    Article  PubMed  CAS  Google Scholar 

  53. Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92: 108–120

    Article  PubMed  CAS  Google Scholar 

  54. Partridge CA, Jeffrey JJ, Malik AB (1993) A 96-kDa gelatinase induced by TNFa contributes to increased microvascular endothelial permeability. Am J Physiol 265: L438–L447

    PubMed  Google Scholar 

  55. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17: 871–890

    Article  PubMed  CAS  Google Scholar 

  56. Asahi M, Asahi K, Wang X, Lo EH (2000) Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 20: 452–457

    Article  PubMed  CAS  Google Scholar 

  57. Morita-Fujimura Y, Fujimura M, Gasche Y, Copin JC, Chan PH (2000) Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J Cereb Blood Flow Metab 20: 130–138

    Article  PubMed  CAS  Google Scholar 

  58. Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST (1985) Oxidative autoactivation of latent collagenase by human neutrophils. Science 227: 747–749

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Gasche, Y., Copin, JC., Chan, P.H. (2001). The role of metalloproteinases on blood-brain barrier breakdown after ischemic stroke. In: Feuerstein, G.Z. (eds) Inflammation and Stroke. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8297-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8297-2_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9508-8

  • Online ISBN: 978-3-0348-8297-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics