Skip to main content

A Minimal Financial Market Model

  • Conference paper
Mathematical Finance

Part of the book series: Trends in Mathematics ((TM))

Abstract

An advanced financial market model should be analytically tractable and must reflect with a minimal number of factors essential stylised empirical facts. It must work equally well for derivative pricing and hedging as well as for risk measurement and portfolio management. All factors in such a market model should represent directly interpretable or observable quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, K. C., G. A. Karolyi, F. A. Longstaff, & A. B. Sanders (1992). An empirical comparison of alternative models of the short-term interest rate.J. Finance 47, 1209–1227.

    Article  Google Scholar 

  2. Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices.Econometrica 41, 135–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cox, J. C. & S. A. Ross (1976). The valuation of options for alternative stochastic processes.J. Financial Economics 3, 145–166.

    Article  Google Scholar 

  4. Delbaen, F.&H. Shirakawa (1997). Squared Bessel processes and their applications to the square root interest rate model. Preprint. Department of Industrial Engineering and Management, Tokio Institute of Technology.

    Google Scholar 

  5. Derman, E. & I. Kani (1994). Riding on a smileRisk 7, 32–39.

    Google Scholar 

  6. Duffle, D. (1996).Dynamic Asset Pricing Theory(2nd ed.). Princeton, University Press.

    Google Scholar 

  7. Dupire, B. (1994). Pricing with a smile.Risk 7, 18–20.

    Google Scholar 

  8. Fouque, J. P., G. Papanicolau&K. R. Sircar (1999). Financial modelling in a fast mean-reverting stochastic volatility environment. Asian-Pacific Financial Markets 6, 37–48.

    Article  MATH  Google Scholar 

  9. Frey, R. (1997). Derivative asset analysis in models with level-dependent and stochastic volatility. Mathematics of Finance, Part II.CWI Quarterly 10(1), 1–34.

    MathSciNet  MATH  Google Scholar 

  10. Geman, H., D. Madan, & M. Yor (1998). Asset prices are Brownian motion: only in business time. University Paris IX Dauphine, (working paper).

    Google Scholar 

  11. Ghysels, E., A. Harvey, & E. Renault (1996). Stochastic volatility. InStatistical Methods in FinanceVolume 14 ofHandbook of Statist.pp. 119–191. North-Holland.

    Google Scholar 

  12. Heath, D.&E. Platen (2000). Pricing and hedging of derivatives under an alternative asset price model with stochastic volatility. University of Technology Sydney, (working paper).

    Google Scholar 

  13. Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options.Rev. Financial Studies 6(2), 327–343.

    Article  Google Scholar 

  14. Heyde, C. C. (1999). A risky asset model with strong dependence through fractal activity time. Columbia University, New York, (working paper).

    Google Scholar 

  15. Hurst, S. R. & E. Platen (1997). The marginal distributions of returns and volatility. In Y. Dodge (Ed.)Li-Statistical Procedures and Related TopicsVolume 31 of IMS Lecture Notes - Monograph Seriespp. 301–314. Institute of Mathematical Statistics Hayward, California.

    Google Scholar 

  16. Hurst, S. R., E. Platen, & S. T. Rachev (1997). Subordinated market index models: A comparison.Financial Engineering and the Japanese Markets 4, 97–124.

    Article  MATH  Google Scholar 

  17. Karatzas, I. & S. E. Shreve (1988).Brownian Motion and Stochastic Calculus.Springer.

    Book  MATH  Google Scholar 

  18. Karatzas, I.&S. E. Shreve (1998).Methods of Mathematical Finance, Volume 39 ofAppl. Math.Springer.

    MATH  Google Scholar 

  19. Platen, E. (1999a). On the log-return distribution of index benchmarked share prices. Technical report, University of Technology, Sydney. QFRG Research Paper 22.

    Google Scholar 

  20. Platen, E. (1999b). A short term interest rate model.Finance and Stochastics 3(2), 215–225.

    Article  MATH  Google Scholar 

  21. Platen, E. (2000). Financial modelling with benchmark portfolio. University of Technology Sydney, (working paper).

    Google Scholar 

  22. Protter, P. (1990).Stochastic Integration and Differential Equations.Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Platen, E. (2001). A Minimal Financial Market Model. In: Kohlmann, M., Tang, S. (eds) Mathematical Finance. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8291-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8291-0_27

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9506-4

  • Online ISBN: 978-3-0348-8291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics