Skip to main content

On an Extremal Problem Originating in Questions of Unconditional Convergence

  • Conference paper
Recent Progress in Multivariate Approximation

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 137))

Abstract

Let n ∈ ℕ and define K : ℝn × ℝn → ℝ by

$$ K\left( {x,y} \right): = \sin \left( { < x,y} \right)\exp \left( { - \left( {{{\left\| x \right\|}^2} + {{\left\| y \right\|}^2}} \right)/2} \right);x,y \in R{^n} $$

where ‖·‖ is the euclidean norm and < ·, · > is the standard scalar product on ℝn. Define T K : L (∝n)→ L 1(ℝn) by

$${T_K}f(x) = \int\limits_{{\mathbb{R}^n}} {K(x,y)f(y)dy, x \in {\mathbb{Z}^n}} $$

i.e. T K is the exponentially weighted odd part of the Fourier transform on ℝn. Is it true that the operator norm of T K is attained on functions like sgn x 1, i.e. is

$${\left\| {{T_K}:{L_\infty }({\mathbb{R}^n}) \to {L_\infty }({\mathbb{R}^n})} \right\|_{Op}} = {\left\| {T(\operatorname{sgn} {x_1})} \right\|_{{L_1}({\mathbb{R}^n})}}$$
((1.1))

for any dimension n?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Grothendieck: Resumé de la theorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paolo 8 (1956), 1–79.

    Google Scholar 

  2. I. Gradhsteyn, I. Ryzhik: Table of Integrals, Series and Products, 5th edition, Acad. Press, 1994.

    Google Scholar 

  3. J. L. Krivine: Constants de Grothendieck et fonctions de type positif sur les sphères, Advances in Math. 31 (1979), 16–30.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Lindenstrauss, L. Tzafriri: Classical Banach spaces I, Springer, 1977.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

König, H. (2001). On an Extremal Problem Originating in Questions of Unconditional Convergence. In: Haussmann, W., Jetter, K., Reimer, M. (eds) Recent Progress in Multivariate Approximation. ISNM International Series of Numerical Mathematics, vol 137. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8272-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8272-9_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9498-2

  • Online ISBN: 978-3-0348-8272-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics