Skip to main content

Well-posedness and Asymptotic Behaviour of Non-autonomous Linear Evolution Equations

  • Chapter
Evolution Equations, Semigroups and Functional Analysis

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 50))

Abstract

There is a striking difference between autonomous and non-autonomous linear evolution equations. Autonomous problems are well understood in the framework of strongly continuous operator semigroups and their generalizations. The Hille-Yosida type theorems settle the question of well-posedness to a great extend, many perturbation and approximation results have been established, and for a large class of problems the asymptotic behaviour can be studied on the basis of spectral theory and transform methods. In these and many other areas semigroup theory has reached a considerable degree of maturity, and its applications thrive in plenty of fields.

To the memory of Brunello Terreni

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), 433–457.

    MathSciNet  MATH  Google Scholar 

  2. P. Acquistapace, Abstract linear nonautonomous parabolic equations: A survey, in: G. Dore, A. Favini, E. Obrecht, A. Venni (Eds.), “Differential Equations in Banach Spaces” (Proc. Bologna 1991), Marcel Dekker, 1993, 1–19.

    Google Scholar 

  3. P. Acquistapace, B. Terreni, Linear parabolic equations in Banach spaces with variable domain but constant interpolations spaces, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 13 (1986), 75–107.

    MathSciNet  MATH  Google Scholar 

  4. P. Acquistapace, B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47–107.

    MathSciNet  MATH  Google Scholar 

  5. H. Amann, Dynamic theory of quasilinear parabolic equations — I. Abstract evolution equations, Nonlinear Anal. 12 (1988), 895–919.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Amann, Linear and Quasilinear Parabolic Problems. Volume 1: Abstract Linear Theory, Birkhäuser, 1995.

    Google Scholar 

  7. B. Aulbach, Nguyen Van Minh, P.P. Zabreiko, Groups of weighted translation operators in Lp and linear nonautonomous differential equations, J. Math. Anal. Appl. 193 (1995), 622–631.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.E. Ballotti, J.A. Goldstein, M.E. Parrott, Almost periodic solutions of evolution equations, J. Math. Anal. Appl. 138 (1989), 522–536.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.G. Baskakov, Some conditions for invertibility of linear differential and difference operators, Russian Acad. Sci. Dokl. Math. 48 (1994), 498–501.

    MathSciNet  Google Scholar 

  10. A.G. Baskakov, Linear differential operators with unbounded operator coefficients and semigroups of bounded operators, Math. Notes 59 (1996), 586–593.

    Article  MathSciNet  MATH  Google Scholar 

  11. A.G. Baskakov, Semigroups of difference operators in spectral analysis of linear differential operators, Funct. Anal. Appl. 30 (1996), 149–157.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.J.K. Batty, R. Chill, Approximation and asymptotic behaviour of evolution families, Differential Integral Equations 15 (2002), 477–512.

    MathSciNet  MATH  Google Scholar 

  13. C.J.K. Batty, R. Chill, Y. Tomilov, Characterizations of strong stability of uniformly bounded evolution families and semigroups, as a preprint in: Ulmer Seminare 4 (1999), 122–139.

    Google Scholar 

  14. C.J.K. Batty, W. Hutter, F. Räbiger, Almost periodicity of mild solutions of inho-mogeneous Cauchy problems, J. Differential Equations 156 (1999), 309–327.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Ben-Artzi, I. Gohberg, Dichotomies of systems and invertibility of linear ordinary differential operators, Oper. Theory Adv. Appl. 56 (1992), 90–119.

    MathSciNet  Google Scholar 

  16. A. Ben-Artzi, I. Gohberg, M.A. Kaashoek, Invertibility and dichotomy of differential operators on the half-line, J. Dynam. Differential Equations 5 (1993), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Buse, On the Perron-Bellman theorem for evolutionary processes with exponential growth in Banach spaces, New Zealand J. Math. 27 (1998), 183–190.

    MathSciNet  MATH  Google Scholar 

  18. A. Buttu, On the evolution operator for a class of non-autonomous abstract parabolic equations, J. Math. Anal. Appl. 170 (1992), 115–137.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Buttu, A construction of the evolution operator for a class of abstract parabolic equations, Dynam. Systems Appl. 3 (1994), 221–234.

    MathSciNet  MATH  Google Scholar 

  20. P. Cannarsa, G. Da Prato, Some results on abstract evolution equations of hyperbolic type, in: G. Dore, A. Favini, E. Obrecht, A. Venni (Eds.), “Differential Equations in Banach Spaces” (Proceedings Bologna 1991), Marcel Dekker, 1993, 41–50.

    Google Scholar 

  21. P. Cannarsa, G. Da Prato, J.P. Zolésio, Evolution equations in noncylindrical domains, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 72–77.

    Google Scholar 

  22. P. Cannarsa, G. Da Prato, J.P. Zolésio, The damped wave equation in a noncylindrical domain, J. Differential Equations 85 (1990), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Caps, Wellposedness of the time-dependent Cauchy problem in scales of Hilbert spaces, Preprint Reihe des Fachbereiches Mathematik Universität Mainz 16, 1998.

    Google Scholar 

  24. O. Caps, Wellposedness of the time-dependent Cauchy problem in scales of Banach spaces, Preprint Reihe des Fachbereiches Mathematik Universität Mainz 1, 1999.

    Google Scholar 

  25. C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Amer. Math. Soc, 1999.

    Google Scholar 

  26. S.-N. Chow, H. Leiva, Existence and roughness of the exponential dichotomy for skew product semiflow in Banach space, J. Differential Equations 120 (1995), 429–477.

    Article  MathSciNet  MATH  Google Scholar 

  27. S.-N. Chow, H. Leiva, Unbounded perturbations of the exponential dichotomy for evolution equations, J. Differential Equations 129 (1996), 509–531.

    Article  MathSciNet  MATH  Google Scholar 

  28. W.A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, 1978.

    Google Scholar 

  29. M.G. Crandall, A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.L. Daleckij, M.G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Amer. Math. Soc, 1974.

    Google Scholar 

  31. D. Daners, P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Longman, 1992.

    Google Scholar 

  32. G. Da Prato, P. Grisvard, Sommes d’opérateurs linéaires et équations différentielles Operationelles, J. Math. Pures Appl. 54 (1975), 305–387.

    MathSciNet  MATH  Google Scholar 

  33. G. Da Prato, P. Grisvard, Equations d’évolution abstraites non linéaires de type parabolique, Ann. Mat. Pura Appl. 120 (1979), 329–396.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Da Prato, M. Iannelli, On a method for studying abstract evolution equations in the hyperbolic case, Commun. Partial Differential Equations 1 (1976), 585–608.

    Article  MATH  Google Scholar 

  35. G. Da Prato, E. Sinestrari, Non autonomous evolution operators of hyperbolic type, Semigroup Forum 45 (1992), 302–321.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Desch, I. Győri, G. Gühring, Stability of nonautonomous delay equations with a positive fundamental solution, as a preprint in: Tübinger Berichte zur Funktion-alanalysis 9 (2000), 125–139.

    Google Scholar 

  38. O. Diekman, M. Gyllenberg, H.R. Thieme, Perturbing evolutionary systems by step responses and cumulative outputs, Differential Integral Equations 8 (1995), 1205–1244.

    MathSciNet  Google Scholar 

  39. K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 2000.

    Google Scholar 

  40. D.E. Evans, Time dependent perturbations and scattering of strongly continuous groups on Banach spaces, Math. Ann. 221 (1976), 275–290.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math 26 (1977), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  42. H.O. Fattorini, The Cauchy Problem, Addison Wesley, 1983.

    Google Scholar 

  43. M. Giga, Y. Giga, H. Sohr, L p estimate f or abstract linear parabolic equations, Proc. Japan Acad. Ser. A 67 (1991), 197–202.

    Article  MathSciNet  MATH  Google Scholar 

  44. J.A. Goldstein, An example of a nonlinear semigroup, Nieuw Arch. Wisk. (3) 22 (1974), 170–174.

    MathSciNet  MATH  Google Scholar 

  45. J.A. Goldstein, Periodic and pseudo-periodic solutions of evolution equations, in: H. Brézis, M.G. Crandall, F. Kappel (Eds.), “Semigroups, Theory and Applications I,” Longman, 1986, 142–146.

    Google Scholar 

  46. G. Gühring, F. Räbiger, Asymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equations, Abstr. Appl. Anal. 4 (1999), 169–194.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Gühring, F. Räbiger, R. Schnaubelt, A characteristic equation for nonautonomous partial functional differential equations, to appear in: J. Differential Equations.

    Google Scholar 

  48. D. Guidetti, On the asymptotic behavior of solutions of linear nonautonomous parabolic equations, Boll. Un. Mat. Ital. B (7) 1 (1987), 1055–1076.

    MathSciNet  MATH  Google Scholar 

  49. I. Győri, F. Hartung, Stability in delay perturbed differential and difference equations, in: T. Faria, P. Freitas (Eds.): “Topics in Functional Differential and Difference Equations (Proceedings Lisboa 1999),” Amer. Math. Soc, 2001.

    Google Scholar 

  50. I. Győri, F. Hartung, Preservation of stability in a linear neutral differential equation under delay perturbations, Dynam. Systems Appl. 10 (2001), 225–242.

    MathSciNet  Google Scholar 

  51. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.

    Google Scholar 

  52. G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Reprint of the 2nd Edition, 1999.

    Google Scholar 

  53. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981.

    Google Scholar 

  54. M. Hieber, S. Monniaux, Heat-kernels and maximal L p-L q -estimates: the nonautonomous case, J. Fourier Anal. Appl. 6 (2000), 467–481.

    Article  MathSciNet  Google Scholar 

  55. M. Hieber, S. Monniaux, Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations, Proc. Amer. Math. Soc. 128 (2000), 1047–1053.

    Article  MathSciNet  MATH  Google Scholar 

  56. J.S. Howland, Stationary scattering theory f or time-dependent Hamiltonians, Math. Ann. 207 (1974), 315–335.

    Article  MathSciNet  MATH  Google Scholar 

  57. W. Hutter, Spectral theory and almost periodicity of mild solutions of non-autonomous Cauchy problems, Ph.D. thesis, Tübingen, 1997.

    Google Scholar 

  58. S. Ishii, Linear evolution equations du/dt-+-A(t)u = 0: a case where A(t)is strongly uniform-measurable, J. Math. Soc. Japan 34 (1982), 413–423.

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Karrmann, Non-autonomous forms and unique existence of solutions, as a preprint in: Ulmer Seminare 5 (2000), 202–211.

    Google Scholar 

  60. T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234.

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J. 19 (1961), 93–125.

    MathSciNet  MATH  Google Scholar 

  62. T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo 25 (1970), 241–258.

    Google Scholar 

  63. T. Kato, Quasilinear equations of evolution, with applications to partial differential equations, in: N.V. Everitt (Ed.), “Spectral Theory and Differential Equations” (Proceedings Dundee 1974), Springer-Verlag, 1975, 25–70.

    Google Scholar 

  64. T. Kato, Abstract evolution equations, linear and quasi-linear, revisited, in: H. Ko-matsu (Ed.), “Functional Analysis and Related Topics” (Proceedings Kyoto 1991), Springer-Verlag, 1993, 103–125.

    Google Scholar 

  65. T. Kato, H. Tanabe, On the abstract evolution equation, Osaka Math. J. 14 (1962), 107–133.

    MathSciNet  MATH  Google Scholar 

  66. K. Kobayasi, On a theorem for linear evolution equations of hyperbolic type, J. Math. Soc. Japan 31 (1979), 647–654.

    Article  MathSciNet  Google Scholar 

  67. J. Kreulich, Eberlein-weakly almost-periodic solutions of evolution equations in Banach spaces, Differential Integral Equations 9 (1996), 1005–1027.

    MathSciNet  MATH  Google Scholar 

  68. R. Labbas, B. Terreni, Somme d’opérateurs linéaires de type parabolique. 1re Partie. Boll. Un. Mat. Ital. B(7) 1 (1987), 545–569.

    MathSciNet  MATH  Google Scholar 

  69. R. Labbas, B. Terreni, Somme d’opérateurs de type elliptique and parabolique. 2e partie: Applications. Boll. Un. Mat. Ital. B(7) 2 (1988), 141–162.

    MathSciNet  MATH  Google Scholar 

  70. Y. Latushkin, S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Funct. Anal. 127 (1995), 173–197.

    Article  MathSciNet  MATH  Google Scholar 

  71. Y. Latushkin, S. Montgomery-Smith, T. Randolph, Evolutionary semigroups and dichotomy of linear skew-product flows on locally compact spaces with Banach fibers, J. Differential Equations 125 (1996), 73–116.

    Article  MathSciNet  MATH  Google Scholar 

  72. Y. Latushkin, T. Randolph, Dichotomy of differential equations on Banach spaces and an algebra of weighted translation operators, Integral Equations Operator Theory 23 (1995), 472–500.

    Article  MathSciNet  MATH  Google Scholar 

  73. Y. Latushkin, T. Randolph, R. Schnaubelt, Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces, J. Dynam. Differential Equations 10 (1998), 489–510.

    Article  MathSciNet  MATH  Google Scholar 

  74. Y. Latushkin, A. M. Stepin, Weighted translation operators and linear extension of dynamical systems, Russian Math. Surveys 46 (1991), 95–165.

    Article  MathSciNet  MATH  Google Scholar 

  75. V.B. Levenshtam, Averaging of quasilinear parabolic equations with rapidly oscillating principal part. Exponential dichotomy, Russian Acad. Sci. Izv. Math. 41 (1993), 95–132.

    MathSciNet  Google Scholar 

  76. B.M. Levitan, V.V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.

    Google Scholar 

  77. X.B. Lin, Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations 63 (1986), 227–254.

    Article  MathSciNet  MATH  Google Scholar 

  78. X.B. Lin, Exponential dichotomy and stability of long periodic solutions in predator-prey models with diffusion, in: J. Hale, J. Wiener (Ed.), “Partial Differential Equations” (Proceedings Edinburgh (TX), 1991), Pitman, 1992, 101–105.

    Google Scholar 

  79. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971.

    Google Scholar 

  80. J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications I, Springer-Verlag, 1972.

    Google Scholar 

  81. M. Lizana Pena, Exponential dichotomy of singularly perturbed linear functional differential equations with small delays, Appl. Anal. 47 (1992), 213–225.

    Article  MathSciNet  Google Scholar 

  82. G. Lumer, Équations d’évolution, semigroupes en espace-temps et perturbations, C.R. Acad. Sci. Paris Série I 300 (1985), 169–172.

    MathSciNet  MATH  Google Scholar 

  83. G. Lumer, Opérateurs d’évolution, comparaison de solutions, perturbations et approximations, C.R. Acad. Sci. Paris Série I 301 (1985), 351–354.

    MathSciNet  MATH  Google Scholar 

  84. G. Lumer, Equations de diffusion dans les domaines (x,t) non-cylindriques et semi-groupes “espace-temps”, Séminaire de Théorie du Potentiel Paris 9 (1989), 161–179.

    Google Scholar 

  85. G. Lumer, R. Schnaubelt, Local operator methods and time-dependent parabolic equations on non-cylindrical domains, in: M. Demuth, E. Schrohe, B.-W. Schulze, J. Sjöstrand (Eds.), “Evolution Equations, Feshbach Resonances, Singular Hodge Theory,” Wiley-VCH, 1999, 58–130.

    Google Scholar 

  86. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.

    Google Scholar 

  87. J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Differential Equations 11 (1999), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Mather, Characterization of Anosov diffeomorphisms, Indag. Math. 30 (1968), 479–483.

    MathSciNet  Google Scholar 

  89. S. Monniaux, J. Prüss, A theorem of Dore-Venni type for non-commuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787–4814.

    Article  MathSciNet  MATH  Google Scholar 

  90. S. Monniaux, A. Rhandi, Semigroup methods to solve non-autonomous evolution equations, Semigroup Forum 60 (2000), 1–13.

    Article  MathSciNet  Google Scholar 

  91. R. Nagel, G. Nickel, Wellposedness for nonautonomous abstract Cauchy problems, appears in this volume.

    Google Scholar 

  92. R. Nagel, A. Rhandi, Positivity and Lyapunov stability conditions f or linear systems, Adv. Math. Sci. Appl. 3 (1993), 33–41.

    MathSciNet  Google Scholar 

  93. R. Nagel, A. Rhandi, A characterization of Lipschitz continuous evolution families on Banach spaces, Oper. Theory Adv. Appl. 75 (1995), 275–286.

    MathSciNet  Google Scholar 

  94. T. Naito, Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations 152 (1999), 338–376.

    Article  MathSciNet  Google Scholar 

  95. H. Neidhardt, On abstract linear evolution equations I, Math. Nachr. 103 (1981), 283–293.

    Article  MathSciNet  MATH  Google Scholar 

  96. Nguyen Van Minh, F. Räbiger, R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory 32 (1998), 332–353.

    Article  MathSciNet  MATH  Google Scholar 

  97. Nguyen Van Minh, Semigroups and stability of nonautonomous differential equations in Banach spaces, Trans. Amer. Math. Soc. 345 (1994), 223–241.

    MathSciNet  MATH  Google Scholar 

  98. G. Nickel, R. Schnaubelt, An extension of Koto’s stability condition for nonautonomous Cauchy problems, Taiwanese J. Math. 2 (1998), 483–496.

    MathSciNet  MATH  Google Scholar 

  99. D.G. Obert, Examples and bounds in the general case of exponential dichotomy roughness, J. Math. Anal. Appl. 174 (1993), 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  100. N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 8 (1998), 399–423.

    MathSciNet  MATH  Google Scholar 

  101. N. Okazawa, A. Unai, Linear evolution equations of hyperbolic type in Hilbert spaces, SUT J. Math. 29 (1993), 51–70.

    MathSciNet  MATH  Google Scholar 

  102. K.J. Palmer, Exponential dichotomy and Fredholm operators, Proc. Amer. Math. Soc. 104 (1988), 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  103. L. Paquet, Semigroupes generalises et équations d’évolution, Séminaire de Théorie du Potentiel Paris 4 (1979), 243–263.

    Article  MathSciNet  Google Scholar 

  104. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.

    Google Scholar 

  105. R.S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199–221.

    Article  MathSciNet  Google Scholar 

  106. M. Pituk, Asymptotic behaviour of solutions of a differential equation with asymptotically constant delay, Nonlinar Anal. 30 (1997), 1111–1118.

    Article  MathSciNet  MATH  Google Scholar 

  107. M. Pituk, The Hartman-Wintner theorem for functional differential equations, J. Differential Equations 155 (1999), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  108. V.A. Pliss, G.R. Sell, Robustness of exponential dichotomies in infinite-dimensional dynamical systems, J. Dynam. Differential Equations 11 (1999), 471–514.

    Article  MathSciNet  MATH  Google Scholar 

  109. J. Prüss, R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl. 256 (2001), 405–430.

    Article  MathSciNet  MATH  Google Scholar 

  110. F. Räbiger, A. Rhandi, R. Schnaubelt, J. Voigt, Non-autonomous Miyadera perturbations, Differential Integral Equations 13 (1999), 341–368.

    Google Scholar 

  111. F. Räbiger, R. Schnaubelt, A spectral characterization of exponentially dichotomic and hyperbolic evolution families, Tübinger Berichte zur Funktionalanalysis 3 (1994), 222–234.

    Google Scholar 

  112. F. Räbiger, R. Schnaubelt, The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions, Semigroup Forum 52 (1996), 225–239.

    Article  MathSciNet  MATH  Google Scholar 

  113. F. Räbiger, R. Schnaubelt, Absorption evolution families and exponential stability of non-autonomous diffusion equations, Differential Integral Equations 12 (1999), 41–65.

    MathSciNet  MATH  Google Scholar 

  114. R. Rau, Hyperbolic evolution semigroups, Ph.D. thesis, Tübingen, 1992.

    Google Scholar 

  115. R. Rau, Hyperbolic evolution groups and dichotomic evolution families, J. Dynam. Differential Equations 6 (1994), 335–350.

    Article  MathSciNet  MATH  Google Scholar 

  116. R. Rau, Hyperbolic evolution semigroups on vector valued function spaces, Semigroup Forum 48 (1994), 107–118.

    Article  MathSciNet  MATH  Google Scholar 

  117. A. Rhandi, Positivity methods f or dichotomy of linear skew-product flows on Hilbert spaces, Quast. Math. 17 (1994), 499–512.

    Article  MathSciNet  MATH  Google Scholar 

  118. W.M. Ruess, W.H. Summers, Weak almost periodicity and the strong ergodic limit theorem f or periodic evolution systems, J. Funct. Anal. 94 (1990), 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  119. R.J. Sacker, G.R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations 113 (1994), 17–67.

    Article  MathSciNet  MATH  Google Scholar 

  120. R. Schnaubelt, Exponential bounds and hyperbolicity of evolution families, Ph.D. thesis, Tübingen, 1996.

    Google Scholar 

  121. R. Schnaubelt, Sufficient conditions for exponential stability and dichotomy of evolution equations, Forum Math. 11 (1999), 543–566.

    Article  MathSciNet  MATH  Google Scholar 

  122. R. Schnaubelt, Exponential dichotomy of non-autonomous evolution equations, Habilitation thesis, Tübingen, 1999.

    Google Scholar 

  123. R. Schnaubelt, A sufficient condition for exponential dichotomy of parabolic evolution equations, in: G. Lumer, L. Weis (Eds.), “Evolution Equations and their Applications in Physical and Life Sciences (Proceedings Bad Herrenalb, 1998),” Marcel Dekker, 2000, 149–158.

    Google Scholar 

  124. R. Schnaubelt, Asymptotically autonomous parabolic evolution equations, J. Evol. Equ. 1 (2001), 19–37.

    Article  MathSciNet  MATH  Google Scholar 

  125. R. Schnaubelt, Parabolic evolution equations with asymptotically autonomous delay, Report No. 02 (2001), Fachbereich Mathematik und Informatik, Universität Halle (preprint).

    Google Scholar 

  126. R. Schnaubelt, Feedbacks for non-autonomous regular linear systems, Report No. 14 (2001), Fachbereich Mathematik und Informatik, Universität Halle (preprint).

    Google Scholar 

  127. R. Schnaubelt, J. Voigt, The non-autonomous Kato class, Arch. Math. 72 (1999), 454–460.

    Article  MathSciNet  MATH  Google Scholar 

  128. P.E. Sobolevskii, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transi. 49 (1966), 1–62. (First published 1961 in Russian.)

    Google Scholar 

  129. P.E. Sobolevskii, Parabolic equations in a Banach space with an unbounded variable operator, a fractional power of which has a constant domain of definition, Soviet Math. Dokl. 2 (1961), 545–548.

    MathSciNet  Google Scholar 

  130. W. Stannat, The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Memoirs Amer. Math. Soc. 142 (1999), no. 678.

    Google Scholar 

  131. Ž. Štrkalj, R-Beschränkheit, Summensätze abgeschlossener Operatoren und opera-torwertige Pseudodifferentialoperatoren, Ph.D. thesis, Karlsruhe, 2000.

    Google Scholar 

  132. H. Tanabe, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 112 (1960), 145–166.

    MathSciNet  Google Scholar 

  133. H. Tanabe, Equations of Evolution, Pitman, 1979.

    Google Scholar 

  134. H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, 1997.

    Google Scholar 

  135. N. Tanaka, Linear evolution equations in Banach spaces, Proc. Lond. Math. Soc. 63 (1991), 657–672.

    Article  MATH  Google Scholar 

  136. N. Tanaka, Semilinear equations in the “hyperbolic” case, Nonlinear Anal. 24 (1995), 773–788.

    Article  MathSciNet  MATH  Google Scholar 

  137. N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Differential Integral Equations 9 (1996), 1067–1108.

    MathSciNet  MATH  Google Scholar 

  138. Vu Quôc Phóng, Stability and almost periodicity of trajectories of periodic processes, J. Differential Equations 115 (1995), 402–415.

    Article  MathSciNet  MATH  Google Scholar 

  139. A. Yagi, On the abstract evolution equations of parabolic type, Osaka J. Math. 14 (1977), 557–568.

    MathSciNet  MATH  Google Scholar 

  140. A. Yagi, Parabolic equations in which the coefficients are generators of infinitely differentiate semigroups II, Funkcial. Ekvac. 33 (1990), 139–150.

    MathSciNet  MATH  Google Scholar 

  141. A. Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces, Boll. Un. Mat. Ital. B (7) 5 (1991), 351–368.

    MathSciNet  Google Scholar 

  142. Y. Yamamoto, Solutions in L p of abstract parabolic equations in Hilbert spaces, J. Math. Kyoto Univ. 33 (1993), 299–314.

    MathSciNet  MATH  Google Scholar 

  143. W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl. 191 (1995), 180–201.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Schnaubelt, R. (2002). Well-posedness and Asymptotic Behaviour of Non-autonomous Linear Evolution Equations. In: Lorenzi, A., Ruf, B. (eds) Evolution Equations, Semigroups and Functional Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 50. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8221-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8221-7_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9480-7

  • Online ISBN: 978-3-0348-8221-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics