Skip to main content

Non-Selfadjoint Sturm-Liouville Operators with Multiple Spectra

  • Conference paper
Interpolation Theory, Systems Theory and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 134))

Abstract

We consider Sturm-Liouville operators

$$H = - \frac{{d^2 }}{{dx^2 }} + q\left( x \right),q\left( x \right) \in \mathfrak{L}^2 \left[ {0,\pi } \right],$$
((1))

with one of the following boundary conditions

$$\begin{gathered} \left. D \right)y\left( 0 \right) = 0,\left. N \right)y\left( 0 \right) = 0,\left. P \right)y\left( 0 \right) = y\left( \pi \right),\left. {AP} \right)y\left( 0 \right) = - y\left( \pi \right), \hfill \\ y\left( \pi \right) = 0;y'\left( \pi \right) = 0;y'\left( 0 \right) = y'\left( \pi \right);y'\left( 0 \right) = - y'\left( \pi \right). \hfill \\ \end{gathered} $$

Spectrum of each problem is discrete and behaves asymptotically as the spectrum of the corresponding operator with q(x)≡0. Namely,

$$\begin{gathered} \lambda _n \left( D \right) = \left( {n + \frac{Q}{n} + \frac{{f_n \left( D \right)}}{n}} \right)^2 ,Q \in C; \hfill \\ \lambda _n \left( N \right) = \left( {n - \frac{1}{2} + \frac{Q}{n} + \frac{{f_n \left( N \right)}}{n}} \right)^2 ,\left\{ {f_n \left( \cdot \right)} \right\}_{n = 1}^\infty \in \ell ^2 ; \hfill \\ \lambda _n^ \pm \left( {AP} \right) = \left( {2n + 1 + \frac{Q}{{2n + 1}} \pm \frac{{f_n \left( {AP} \right)}}{n} + \frac{{g_n \left( {AP} \right)}}{{n^2 }}} \right)^2 . \hfill \\ \end{gathered} $$
((2))

Our aim is to find additional conditions, if any, which guarantee that a given sequence satisfying one of equations (2) is the spectrum of the corresponding boundary problem. In particular, we would like to know whether some points of the spectra may be multiple and whether there are some restrictions on their multiplicities, i.e., on dimensions of corresponding root subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Naimark, M.A. (1967) Linear Differential Operators, Part I. Frederick Ungar Publishing Co., New York.

    MATH  Google Scholar 

  2. Titchmarsh, E.C. (1958)Eigenfunction expansions associated with second-order differential equations, v. II, Clarendon Press, Oxford.

    MATH  Google Scholar 

  3. Birnir, B. (1986)Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Commun. Pure and Appl. Math., 39, 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  4. Birnir, B. (1986)Singularities of the complex Korteweg-de Vries flows, Commun. Pure and Appl. Math., 39, 283–305.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gesztezy, F., and Weikard, R. (1996)Picard potentials and Hill’s equation on a torus, Acta Math., 176, 73–107.

    Article  MathSciNet  Google Scholar 

  6. Marchenko, V.A.(1986) Sturm-Liouville operators and applications, Birkhäuser, Basel.

    MATH  Google Scholar 

  7. Levitan, B.M. (1977) Inverse Sturm-Liouville problems, Nauka, Moscow, 1–240.

    Google Scholar 

  8. Sansuc, J.-J., and Tkachenko, V.(1996) Spectral parametrization of non-selfadjoint Hill’s operators, Journ. Diff. Equat., 125, 2, 366–384.

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, B., and Ostrovskii, I.V.(1980)On small perturbations of the set of zeros of functions of sine type, Math. USSR Izvestia, 14, 1.

    Article  Google Scholar 

  10. Levin, B. (1996)A.M.S., 150, 248 pp.

    Google Scholar 

  11. Tkachenko, V. (1992)Spectral analysis of non-selfadjoint Hill operator, Doklady AN SSSR, 322, 2, 248–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Tkachenko, V. (2002). Non-Selfadjoint Sturm-Liouville Operators with Multiple Spectra. In: Alpay, D., Vinnikov, V., Gohberg, I. (eds) Interpolation Theory, Systems Theory and Related Topics. Operator Theory: Advances and Applications, vol 134. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8215-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8215-6_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9477-7

  • Online ISBN: 978-3-0348-8215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics