Skip to main content

Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration

  • Chapter
Mycorrhizal Technology in Agriculture

Abstract

A wide range of natural factors such as lightning-caused fires and geomorphic or palaeotectonic processes may affect the stability of natural ecosystems (Herrera et al. 1993). Additionally, human activities causing pollution of air, water and soil, and overuse of resources like grasslands or clear-cutting of forests have a strong impact on a wide range of ecosystems. They may become degraded to such an extent that spontaneous recovery is strongly limited, especially if the damaging agent is continuously present. In general, successful restoration requires the reconstruction of adequate biological, physico-chemical, hydrological and morphological conditions. Moreover, the presence of hazardous substances can necessitate chemical or bioremediated clean-up. A common reason for the failure of many restoration attempts is the neglect of the fact that the plant root systems are associated with a diverse community of active soil micro-organisms. It is well known that a functioning association between plants and rhizosphere micro-organisms can modify the substratum, facilitate plant establishment under hostile conditions, and counteract the stagnation of the succession.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen E B (1989a) The restoration of disturbed arid landscapes with special reference to mycorrhizal fungi. J Arid Environm 17:279–286

    Google Scholar 

  • Allen M F (1989b) Mycorrhizae and rehabilitation of disturbed arid soils: Processes and practices. Arid Soil Res 3:229–241

    Article  Google Scholar 

  • Allen E B, Allen M F (1990) The mediation of competition by mycorrhizal fungi in successional and patchy environments. In: Grace J R, Tilman G D (eds) Perspectives in plant competition. Academic Press, New York pp 367–389

    Google Scholar 

  • Azcón-Aguilar C, Barea J M (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen M J (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York pp 163–198

    Google Scholar 

  • Azcón R, Rubio R, Barea J M (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Bach A, Kodra M (1997) Somatic embryogenesis of Lilium martagon L. seedling culture. 22nd Con-ference of Embryology. Plants, Animals, Humans. Osieczany. Acta Biol Cracov 39 (Suppl 1):47

    Google Scholar 

  • Blaszkowski J (1994) Arbuscular fungi and mycorrhizae (Glomales) of the Hel Peninsula, Poland. Mycorrhiza 5:71–88

    Article  Google Scholar 

  • Blaszkowski J, Tadych M, Madej T (2000) Arbuscular mycorrhizal fungi (Glomales, Zygomycota) of the Bledowska Desert, Poland. Acta Soc Bot Pol (in press)

    Google Scholar 

  • Brooks R R, Chambers M F, Nicks L J, Robinson B H (1998) Phytomining. Water Air & Soil Pollut 104:389–402

    Article  Google Scholar 

  • Cabello M N (1995) Effect of hydrocarbon pollution on vesicular-arbuscular mycorrhizal fungi (VAM). Bol Micol (Chile) 10:77–83

    Google Scholar 

  • Cabello M N (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22:233–236

    Article  CAS  Google Scholar 

  • Cabello M N (1999) Effectiveness of indigenous arbuscular mycorrhizal fungi (AMF) isolated from hydrocarbon polluted soils. J Basic Microbiol 39:89–95

    Article  CAS  Google Scholar 

  • Call C A, McKell C M (1982) Vesicular-arbuscular mycorrhizae - a natural revegetation strategy for disposed processed oil shale. Reclam Revegn Res 1:337–347

    Google Scholar 

  • Crowley D E, Brennerova M V, Irwin C, Brenner V, Focht D D (1996) Rhizosphere effects on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Ecol 20:79–89

    Article  CAS  Google Scholar 

  • Cuenca G, Lovira M (1992) Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can J Bot 70:73–79

    Article  Google Scholar 

  • Daft M J, Hacskaylo E (1976) Arbuscular mycorrhizas in the anthracite and bituminous coal wastes of Pensylvania. J Appl Ecol 13:523–531

    Article  CAS  Google Scholar 

  • Daft M J, Nicolson T H (1974) Arbuscular mycorrhizas colonizing coal wastes in Scotland. New Phytol 74:1129–1132

    Article  Google Scholar 

  • Daniels B A, Duff D M (1978) Variation in germination and spore morphology among four isolates of Glomus mossae. Mycologia 70:1261–1267

    Article  Google Scholar 

  • Del Val C, Barea J M, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environm Microbiol 65:718–723

    CAS  Google Scholar 

  • Densmore R (1994) Succession on regraded placer mine spoil in Alaska, U.S.A., in relation to initial site characteristics. Arctic Alpine Res 26:354–363

    Article  Google Scholar 

  • Dowling D N, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Edwards P J, Abivardi C (1997) Ecological engineering and sustainable development. In: Urbanska K, Webb N R, Edwards P J (eds) Restoration ecology and sustainable development. Cambridge Univ. Press, Cambridge pp 325–352

    Google Scholar 

  • Edwards S G, Young J P W, Fitter A H (1988) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mossae an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297–303

    Article  Google Scholar 

  • Fitter A H (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 70:119–125

    Article  Google Scholar 

  • Francis R, Read D J (1994) The contribution of mycorrhizal fungi to the determination of plant community structure. Plant & Soil 159:11–25

    Google Scholar 

  • Francis R, Read D J (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special ref-erence to impacts on plant community structure. Can J Bot 73 (Suppl 1):1301–1309

    Article  Google Scholar 

  • Fuchs B (2001) Mykorrhizierung ausgewählter und gefährdeter Pflanzenarten zweier Feuchtstandorte m Bundesland Salzburg. MSc Thesis, University of Salzburg, Austria

    Google Scholar 

  • Ganesan V, Ragupathy S, Parthipan B, Raijini Rani D B, Mahadevan A (1991) Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India. Biol Fertil Soils 12:131–136

    Article  Google Scholar 

  • Ganesan V, Ragupathy S, Parthipan B, Raijini Rani Ganesan V, Ragupathy S, Parthipan B, Raijini Rani D B, Mahadevan A (1991) Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India. Biol Fertil Soils 12:131–136

    Article  Google Scholar 

  • Gange A C, Brown V K, Foster L M (1990) A test of mycorrhizal benefit in an early succession plant community. New Phytol 115:85–91

    Article  Google Scholar 

  • Gange A C, Brown V K, Sinclair G S (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Eco! 7:616–622

    Article  Google Scholar 

  • Grodzinska K, Mirek Z, Szarek G (1995) Environmental damage and restoration attempts in Poland -an Overview. In: Urbanska K M, Grodzinska K (eds) Restoration ecology in Europe. Geobotanical Institute SFIT, Zürich pp 113–130

    Google Scholar 

  • Grunwald C, Iverson L R, Szafoni D B (1988) Abandoned mines in Illinois and North Dakota: towards an understanding of revegetation problems. In: Cairns J (ed) Rehabilitating damaged ecosystems, vol. 1. CRC Press, Boca Raton, Florida pp 40–56

    Google Scholar 

  • Gryndler M, Vosatka M (1996) The response of the arbuscular mycorrhizal fungus Glomus fistulosum to treatments with culture fractions from Pseudomonas putida. Mycorrhiza 6:207–211

    Article  Google Scholar 

  • Harley J L, Harley E L (1987) A check-list of mycorrhiza in the British flora. New Phytol (Suppl) 105:1–102

    Article  Google Scholar 

  • Harnett D C, Hetrick B A D, Wilson G W T, Gibson D J (1993) Mycorrhizal influence on infra-and inter-specific neighbour interactions among co-occurring praire grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Haselwandter K (1987) Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angew Bot 61:107–114

    Google Scholar 

  • Haselwandter K (1997) Soil micro-organisms, mycorrhiza, and restoration ecology. In: Urbanska K., Webb N R, Edwards P J (eds) Restoration ecology and sustainable development. Cambridge Univ. Press, Cambridge pp 65–80

    Google Scholar 

  • Haselwandter K, Bowen G D (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. Forest Ecol Managern 81:1–17

    Article  Google Scholar 

  • Haselwandter K, Read D J (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  Google Scholar 

  • Helm D J (1995) Native grass cultivars for multiple restoration goals on a proposed mine site in south-central Alaska. Restoration Ecol 3:111–122

    Article  Google Scholar 

  • Herrera M A, Salamanca C P, Barea J M (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl Environm Microbiol 59:129–133

    CAS  Google Scholar 

  • Hetrick B A D, Wilson G W T, Harnett D C (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot. 67:2608–2615

    Article  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal olonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycor-rhizal fungi. J Plant Physiol 154:709–717

    Article  CAS  Google Scholar 

  • Hooker J E, Gianinazzi S, Vestberg M, Barea J M, Atkinson D (1994) The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical input. Agric Sei (Finland) 3:227–232

    Google Scholar 

  • Jacquot-Plumey E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (1999) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant & Soil (in press)

    Google Scholar 

  • Janos D P (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Jasper D A (1994) Management of mycorrhizas in revegetation. In: Robson A D, Abbott L K, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Dordrecht, Kluwer pp. 211–219

    Google Scholar 

  • Jha D K, Sharma G D, Mishra R R (1992) Ecology of soil microflora and mycorrhizal symbionts in degraded forests at two altitudes. Biol Fertil Soils 12:272–278

    Article  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kelsey P, Hootman R (1990) Soil recource evaluation for a group of sidewalk street tree planters. J Arboric 16:113–117

    Google Scholar 

  • Khan A G (1981) Growth responses of endomycorrhizal onions in unsterilized coal wasts. New Phytol 87:363–370

    Article  CAS  Google Scholar 

  • Khan A G, Kuek C, Chaudhry T M, Khoo C S, Hayes W J (2000) Role of plants, mycorrhizae and hytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  PubMed  CAS  Google Scholar 

  • Lambert D H, Cole H (1980) Effects of mycorrhizae on establishment and performance of forage spe-cies in mine spoil. Agron J 72:257–260

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colo-nization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Liberta A E (1981) Effects of topsoil-storage duration on inoculum potential of vesicular-arbuscular mycorrhizae. In Graves DH (ed) Symposium on Surface Mining, Hydrology, Sedientation and Reclamation. Office of Engineering Services, College of Engineering, University of Kentucky, Lexington, Kentucky pp 45–48

    Google Scholar 

  • Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from nat-ural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118

    Article  Google Scholar 

  • Martens D A, Frankenberger W T (1992) Modification of infiltration rates in an organic-amended irri-gated soil. Agron J 84:707–717

    Article  Google Scholar 

  • Mc Rae E A (1998). Lilies. Timber Press, Portland, Oregon (USA)

    Google Scholar 

  • Miller R M, Jastrow J D (1992) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen M F (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York pp 438–467

    Google Scholar 

  • Mirek Z, Piekos-Mirkowa H (2000) Operat ochrony gatunkowej roslin jako narzedzie ochrony flory na obszarze parku narodowego. In: Woloszyn B, Postawa T (eds) Drugie forum dyskusyjne: Parki Narodowe i ich funkcja w czasie i przestrzeni. Komitet Ochrony Przyrody PAN, Kraków pp 33–52

    Google Scholar 

  • Ojala J C, Jarrell W M, Menge J A, Johnson E L V (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Pawlowska T (1991) Plant mycorrhizae in the sedimentation tanks of the Cracow soda factory. Zesz Nauk UJ, Prace Bot. 22:163–170

    Google Scholar 

  • Pawlowska T, Chaney R L, Chin L, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl Environm Microbiol 66/6:2526–2530

    Article  CAS  Google Scholar 

  • Pond E C, Menge J A, Jarrell W M (1984) Improved growth of tomato in salinized soil by vesiculararbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:78–84

    Article  Google Scholar 

  • Read D J, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–362.

    Article  Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  • Reeves F B, Wagner D, Moorman T, Keil J (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments. Amer J Bot 66:6–13

    Article  Google Scholar 

  • Rodgers C S, Anderson R C (1989) Establishment of grasses on sewage-sludge amended strip mine spoils. In: Bragg T B, Stubbendieck J (eds) Proceedings of the 11th North American Praire Conference. University of Nebrasca Press, Lincoln, Nebrasca pp 103–108

    Google Scholar 

  • Rosendahl C N, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environm Exp Bot 31:313–318

    Article  Google Scholar 

  • Rozema C N, Arp W, van Diggelen, van Esbroek M, Brokeman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467

    Google Scholar 

  • Sanders I R, Koide R T (1994) Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old field annuals. Funct Ecol 18:77–84

    Article  Google Scholar 

  • Smith S E, Read D J (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Book  Google Scholar 

  • Stahl P D, Smith W K (1984) cts of different geographic isolates of Glomus on the water relations of Agropyron smithii 76:261–267

    Google Scholar 

  • Stahl P D, Williams S E (1986) Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium 4 years after application to soil. Soil Biol Biochem 18:451–455

    Article  Google Scholar 

  • Stahl P D, Williams S E, Christensen M (1988) Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–354

    Article  Google Scholar 

  • Sucoff E (1975) Effect of deicing salts on woody vegetation along Minnesota roads. Tech Bull Minn Agric Exp: 303–309

    Google Scholar 

  • Sylvia D M (1990) Beneficial root-associated fungi improve establishment of sea oats on beach nourishment sand. In: Proceedings of the Third Annual National Conference on Beach Preservation Technology (St. Petersburg, FL, 1990) pp 100–111

    Google Scholar 

  • Sylvia D M, Williams S E (1992) Vesicular-arbuscular mycorrhizae and environmental stress. In: Mycorrhizae in sustainable agriculture. ASA Special Publication no. 54, ASA, CSSA, SSSA, Madison, WI pp 101–124

    Google Scholar 

  • Tadych M, Blaszkowski J (2000) Arbuscular fungi and mycorrhizae (Glomales) of the Slowinski National Park, Poland. Mycotaxon 74:463–482

    Google Scholar 

  • Tsang A, Maun M A (1999) Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastal foredunes. Pl Ecol 144:159–166

    Article  Google Scholar 

  • Turnau K (1998) Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland. Acta Soc Bot Poloniae 67:105–113

    CAS  Google Scholar 

  • Turnau K, Rybka R (1991) Succession of microorganisms on the spoil mounds of the Cracow soda factory. Zesz. Nauk. UJ, Prace Bot. 22:155–161

    Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D, (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174

    Article  CAS  Google Scholar 

  • Urbanska K M (1995) Ecological restoration above the timberline and its demographic assessment. In: Urbanska K M, Grodzinska K (eds) Restoration ecology in Europe. Geobotanical Institute SFIT, Zürich pp 113–130

    Google Scholar 

  • Van der Heijden M G A, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I R (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Van der Heijden M G A, Boller T, Wiemken A, Sanders I R (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gallotte A, Gianinazzi-Pearson V (1998a) Charaterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  Google Scholar 

  • van Tuinen D, Zhao B, Gianinazzi-Pearson V (1998b) PCR in studies of AM fungi: from primers to pplication. In: Vanna A K (ed) Mycorrhizal Manual. Springer-Verlag, Heidelberg pp 387–399

    Chapter  Google Scholar 

  • Vosatka M, Jansa J, Regvar M, Sramek F, Malcova R (1999) Inoculation with mycorrhizal fungi – a easible biotechnology for horticulture. Phyton 39:219–224

    Google Scholar 

  • Waaland M E, Allen E B (1987) Relationships between VA mycorrhizal fungi and plant cover following surface mining in Wyoming. J Range Managem 40:271–276.

    Article  Google Scholar 

  • Zenkteler E (1993) Homo-and heterophasis in the in vitro reproduction of Phyllitis scolopendrium L. Newm. Bull PAN, Biol Sci 41:267–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Turnau, K., Haselwandter, K. (2002). Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (eds) Mycorrhizal Technology in Agriculture. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8117-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8117-3_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9444-9

  • Online ISBN: 978-3-0348-8117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics