Skip to main content

Real Numbers with Bounded Digit Averages

  • Conference paper
Mathematics and Computer Science III

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper considers numeration schemes, defined in terms of dynamical systems and studies the set of reals which obey some constraints on their digits. In this general setting, (almost) all sets have zero Lebesgue measure, even though the nature of the constraints and the numeration schemes are very different. Sets of zero measure appear in many areas of science, and Hausdorff dimension has shown to be an appropriate tool for studying their nature. Classically, the studied constraints involve each digit in an independent way. Here, more global conditions are studied, which only provide constraints on each digit prefix. The main example of interest deals with reals whose all the digit prefix averages in their continued fraction expansion are bounded by M. More generally, a weight function is defined on the digits, and the weighted average of each prefix has to be bounded by M. This setting can be translated in terms of random walks where each step performed depends on the present digit, and walks under study are constrained to be always under a line of slope M. We first provide a characterization of the Hausdorff dimension 5M, in terms of the dominant eigenvalue of the weighted operator transfer relative to the dynamical system, in a quite general setting. We then come back to our main example; With the previous characterization at hand and use of the Mellin transform, we exhibit the behaviour of \( \left| {S_M - 1} \right| \) when the bound M becomes large. Even if this study seems closely related to previous works in Multifractal Analysis, it is in a sense complementary, because it uses weights on digits which grow faster and deals with different methods. This paper only presents a detailed abstract of this study; it describes the main tools and the sketches of proofs whereas a full paper [6] contains all the proofs of the statements which are briefly described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baladi, V., Positive Transfer operators and decay of correlations, Advanced Series in non linear dynamics, World Scientific, 2000.

    Google Scholar 

  2. Baladi, V., And ValléE, B., Distributional analyses of Euclidean algorithms, to appear in Proceedings of ANALCO’04, also Les Cahiers du GREYC, Université de Caen, 2004.

    Google Scholar 

  3. Baladi, V., And VallEe, B., Euclidean algorithms are Gaussian, available from the ArXiv, submitted, also Les Cahiers du GREYC 2004.

    Google Scholar 

  4. Besicovitch, A.S., Sets of fractional dimensions: On rational approximation to real numbers. J. London Math. Society, vol 9, pp. 126–131, 1934.

    Article  MathSciNet  Google Scholar 

  5. Billingsley, P., Probability and Measure John Wiley & Sons, 1979

    Google Scholar 

  6. Cesaratto, E. and VallEE, B. Hausdorff dimension of real numbers with bounded digit averages, Long version of this paper, les Cahiers du GREYC 2004, Submitted.

    Google Scholar 

  7. DaudE H, Flajolet P, Vallee B., An average-case analysis of the Gaussian Algorithm for lattice reduction Combinatorics, Probability and Computing No 6 pp 397–433, 1997.

    Article  MATH  Google Scholar 

  8. Eggleston, H., The fractional dimension of a set defined by decimal properties. Quaterly Journal of Mathematics, Oxford Series, 20, pp. 31–36, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  9. Falconer, K., Fractal Geometry - Mathematical Foundations and Applications, John Wiley & Sons, New York, 1990.

    MATH  Google Scholar 

  10. Falconer, K., Techniques in Fractal Geometry, John Wiley & Sons, New York, 1997.

    MATH  Google Scholar 

  11. Good I.J. The fractional dimensional theory of continued fractions, Math. Proc. Cambridge Philos. Soc. 37 (1941) pp 199–228.

    Article  MathSciNet  Google Scholar 

  12. Hanus, P., Mauldin, D, Urbanski M, Thermodynamic formalism and multi-fractal analysis of conformal infinite iterated function system. Acta Math. Hungarica, Vol. 96, pp. 27–98, 2002.

    Article  MATH  Google Scholar 

  13. Hensley, D., The Hausdorff dimensions of some continued fraction Cantor sets, Journal of Number theory 33, (1989) pp 182–198

    Article  MathSciNet  MATH  Google Scholar 

  14. Hensley, D., Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis, Journal of Number Theory 40 (1992) pp 336–358.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hensley, D., A polynomial time algorithm for the Hausdorff dimension of a continued fraction Cantor set, Journal of Number Theory 58 pp 9–45, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hensley, D., The statistics of the continued fraction digit sum, Pacific Journal of Mathematics, Vol. 192, No2, 2000.

    Google Scholar 

  17. Hwang, H.-K., Théorèmes limite pour les structures combinatoires et les fonctions arithmétiques, PhD thesis, Ecole Polytechnique, Dec. 1994.

    Google Scholar 

  18. Hwang, H.-K., Large deviations for combinatorial distributions: I. Central limit theorems, The Annals of Applied Probability 6 (1996) 297–319.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hwang, H.-K., On convergence rates in the central limit theorems for combinatorial structures, European Journal of Combinatorics 19 (1998) 329–343.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarnik, V., Zur metrischen Theorie der diophantischen Approximationen. Prace Mat. Fiz. 36, pp. 91–106, 1928.

    Google Scholar 

  21. Jarnik, V., Über die simultanen diophantischen Approximationen. Math. Zeit., 33, pp. 505–543, 1931.

    Article  MathSciNet  Google Scholar 

  22. Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, 1980.

    Google Scholar 

  23. Khinchin, A. I., Continued Fractions, Dover Publications, Mineola, New York, 1997.

    Google Scholar 

  24. Lasota, A., Mackey, M., Chaos, Fractals and Noise; Stochastic Aspects of Dynamics, Applied Mathematical Science 97, Springer, 1994.

    Google Scholar 

  25. Lhote L., Computation of a Class of Continued Fraction Constants, Proceedings of ANALCO’04, to appear

    Google Scholar 

  26. Mandelbrot, B., Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. of Fluid Mech. 62, pp. 331–358, 1974.

    Article  MATH  Google Scholar 

  27. Mauldin, D., Urbanski, M. Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3) 73, pp 105–154, 1996.

    Article  MATH  Google Scholar 

  28. Mauldin, D., Urbanski, M. Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc. 351 (1999) pp 4995–5025.

    Article  MATH  Google Scholar 

  29. Peyriere, J., Calculs de dimensions de Hausdorff, Duke Math. J. Vol. 44., No 3, pp. 591–600, 1977.

    Google Scholar 

  30. Pesin, Y. B., Dimension Theory in dynamical systems: contemporary views and applications, Chicago Lectures in Mathh., The university of Chicago Press (1997).

    Book  Google Scholar 

  31. Shallit, J., Real numbers with bounded partial quotients. A survey. L ‘Enseignement Mathématique, t. 38, pp 151–187, 1992.

    MathSciNet  MATH  Google Scholar 

  32. Vallee, B., Fractions Continues à contraintes périodiques. Journal of Number Theory, 72, pp.183–235, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  33. Vallee, B., Dynamical Analysis of a Class of Euclidean Algorithms, Theoretical Computer Science vol 297/1–3 (2003) 447–486.

    Article  MATH  Google Scholar 

  34. Vallee B., Digits and Continuants in Euclidean Algorithms: Ergodic vs Tauberian Theorems. Journal de Théorie des Nombres de Bordeaux pp 531–570, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Cesaratto, E., Vallée, B. (2004). Real Numbers with Bounded Digit Averages. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds) Mathematics and Computer Science III. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7915-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7915-6_46

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9620-7

  • Online ISBN: 978-3-0348-7915-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics