Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 397 Accesses

Abstract

Bone morphogenetic proteins (BMPs) are involved in a broad array of morphogenetic processes. These span from the specification of the dorso-ventral body axis to patterning, organogenesis and differentiation of most tissues. Nevertheless, the initial discovery of BMPs as protein preparations that induced ectopically and in vivo a cascade of endochondral bone formation in rats, has strongly stimulated the study of their role in the development of the skeleton and in patterning of the synovial joints [1-3]. Additionally, with their remarkable cartilage and bone morphogenetic activity, BMPs represent an attractive therapeutic option for skeletal and joint disorders. Indeed, growing scientific evidence supports the concept that tissue repair and regeneration recapitulates to a certain extent the process of tissue formation during embryonic development. Recent advances in unraveling the molecular basis of developmental processes support BMP signaling as potential targets in reparative approaches in joint diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kingsley DM (1994) What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet 10: 16–21

    Article  CAS  Google Scholar 

  2. Luyten FP (1997) A scientific basis for the biologic regeneration of synovial joints. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83: 167–169

    Article  CAS  Google Scholar 

  3. Dell’Accio F, De Bari C, Luyten FP (1999) Molecular basis of joint development. Jpn J Rheumatol 9: 17–29

    Article  Google Scholar 

  4. Bernays A (1878) Die Entwicklungsgeschichte des Kniegelenkes des Menschen, mit Be-merkungen fiber die Gelenke im Allgemeinen. Morphologiesches Jahrbuch 4: 403–446

    Google Scholar 

  5. Andersen H, Bro-Rasmussen F (1961) Histochemical studies on the histogenesis of the joints in human fetuses with special references to the development of the joint cavities in the hand and foot. Am J Anat 108: 111–122

    Article  CAS  Google Scholar 

  6. Andersen H (1962) Histochemical studies on the histogenesis of the human elbow joint.Acta Anatomica 51: 50–68

    Article  CAS  Google Scholar 

  7. Andersen H (1962) Histochemical studies of the development of the human hip joint.Acta Anatomica 48: 258–292

    Article  CAS  Google Scholar 

  8. Andersen H (1963) Histochemistry and development of the human shoulder and acromio-clavicular joint with particular reference to the early development of the clavicle. Acta Anatomica 55: 124–165

    Article  CAS  Google Scholar 

  9. Gardner E, Gray DJ, O’Rahilly R (1959) The prenatal development of the skeleton and joints of the human foot. J Bone Joint Surg Am 41A: 847–876

    Google Scholar 

  10. Haines RW (1947) The development of joints. J Anat 81: 33–55

    Google Scholar 

  11. Andersen H (1961) Histochemical studies on the histogenesis of the knee joint and superior tibio-fibular joint in human foetuses. J Anat 46: 274–303

    Google Scholar 

  12. Merida Velasco JA, Sanchez Montesinos I, Espin Ferra J, Rodriguez Vazquez JF, Merida Velasco JR, Jimenez Collado J (1997) Development of the human knee joint. Anat Rec 248: 269–278

    Article  CAS  Google Scholar 

  13. Morrison EH, Ferguson MW, Bayliss MT, Archer CW (1996) The development of articular cartilage: I. The spatial and temporal patterns of collagen types. J Anat 189: 9–22

    CAS  Google Scholar 

  14. Archer CW, Morrison H, Pitsillides AA (1994) Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat 184: 447–456

    Google Scholar 

  15. Gardner E, O’Rahilly R (1962) The development of the elbow joint of the chick and its correlation with the embryonic staging. J Anat Entwicklungsgesch 123: 174–179

    Article  Google Scholar 

  16. Henrikson RC, Cohen AS (1965) Light and electron microscopic observation of the developing chick interphalangeal joints. J Ultrastruct Res 13: 129–162

    Article  CAS  Google Scholar 

  17. O’Rahilly R, Gardner E (1956) The development of the knee joint of the chick and its correlation with embryonic staging. J Morphol 98: 49–88

    Article  Google Scholar 

  18. Mitrovic DR (1977) Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies. Am J Anat 150: 333–347

    Article  CAS  Google Scholar 

  19. Ginsburg GT, Royster D, Kassabian G, Shuler CF, Dougherty WR, Sank AC (1995) Mesenchymal commitment to digital joint formation. Ann Plast Surg 35: 95–104

    Article  CAS  Google Scholar 

  20. Takabatake K, Yamamoto T (1991) Morphology of the synovium during its differentiation and development in the mouse knee joint. A histochemical, SEM and TEM study. Anat Embryol Berl 183: 537–544

    Article  CAS  Google Scholar 

  21. Mitrovic D (1978) Development of the diarthrodial joints in the rat embryo. Am J Anat 151: 475–485

    Article  CAS  Google Scholar 

  22. Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryo! Exp Morphol 41: 245–258

    CAS  Google Scholar 

  23. Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol Berl 150: 171–186

    Article  CAS  Google Scholar 

  24. Kenny-Mobbs T (1985) Myogenic differentiation in early chick wing mesenchyme in the absence of the brachial somites. J Embryol Exp Morphol 90: 415–436

    CAS  Google Scholar 

  25. Craig FM, Bentley G, Archer CW (1987) The spatial and temporal pattern of collagens I and II and keratan sulphate in the developing chick metatarsophalangeal joint. Development 99: 383–391

    CAS  Google Scholar 

  26. Thorogood PV, Hinchliffe JR (1975) An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol 33: 581–606

    CAS  Google Scholar 

  27. Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi AH, Moos M, Jr (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269: 28227–28234

    CAS  Google Scholar 

  28. Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122: 3969–3979

    CAS  Google Scholar 

  29. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF betasuperfamily. Nature 368: 639–643

    Article  CAS  Google Scholar 

  30. Luyten FP (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 29: 1241–1244

    Article  CAS  Google Scholar 

  31. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12: 315–317

    Article  CAS  Google Scholar 

  32. Grebe H (1952) Die Achondrogenesis: ein einfach rezessives. Erbmerkmal Folia Hered Path 2: 23–28

    Google Scholar 

  33. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten FP (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17: 58–64

    Article  CAS  Google Scholar 

  34. Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biology 254(1): 116–130

    Article  CAS  Google Scholar 

  35. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49–92

    Article  Google Scholar 

  36. Macias D, Ganan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM (1997) Role of BMP2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124: 1109–1117

    CAS  Google Scholar 

  37. Rosen V, Thies RS, Lyons K (1996) Signaling pathways in skeletal formation: a role for BMP receptors. Ann NY Acad Sci 785: 59–69

    Article  CAS  Google Scholar 

  38. Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis West PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57: 145–157

    Article  CAS  Google Scholar 

  39. Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14: 627–644

    CAS  Google Scholar 

  40. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19: 1745–1754

    Article  CAS  Google Scholar 

  41. Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126: 5515–5522

    CAS  Google Scholar 

  42. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594

    Article  CAS  Google Scholar 

  43. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598

    Article  CAS  Google Scholar 

  44. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457

    Article  CAS  Google Scholar 

  45. Francis West PH, Richardson MK, Bell E, Chen P, Luyten F, Adelfattah A, Barlow AJ, Brickell PM, Wolpert L, Archer CW (1996) The effect of overexpression of BMPs and GDF-5 on the development of chick limb skeletal elements. Ann NY Acad Sci 785: 254–255

    Article  CAS  Google Scholar 

  46. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal development. Development 126: 1305–1315

    CAS  Google Scholar 

  47. Tsumaki N, Tanaka K, Arikawa-Hirasawa E, Nakase T, Kimura T, Thomas JT, Ochi T, Luyten FP, Yamada Y (1999) Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J Cell Biol 144: 161–173

    Article  CAS  Google Scholar 

  48. Gong Y, Krakow D, Marcelino C, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers CW, Cremers FPM, Brunner HG et al (1999) Heterozygous mutations in the gene encoding noggin affect joint morphogenesis. Nat Genet 21: 302–330

    Article  CAS  Google Scholar 

  49. Dixon ME, Armstrong P, Stevens DB, Bamshad M (2001) Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism. Genet Med 3 (5): 349–353

    Article  CAS  Google Scholar 

  50. Brown DJ, Kim TB, Petty EM, Downs CA, Martin DM, Strouse PJ, Moroi SE, Milunsky JM, Lesperance MM (2002) Dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin. Am J Hum Genet 71: 618–624

    Article  CAS  Google Scholar 

  51. Polinkovsky A, Robin NH, Thomas JT, Irons M, Lynn A, Goodman FR, Reardon W, Kant SG, Brunner HG, van der Burgt I et al (1997) Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet 17: 18–19

    Article  CAS  Google Scholar 

  52. Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127: 605–619

    CAS  Google Scholar 

  53. Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127: 621–630

    CAS  Google Scholar 

  54. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A, Yamashita H, Enomoto S, Miyazono K (1996) Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 271: 21345–21352

    Article  CAS  Google Scholar 

  55. Erlacher L, McCartney J, Piek E, Ten Dijke P, Yanagishita M, Oppermann H, Luyten FP (1998) Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res 13: 383–392

    Article  CAS  Google Scholar 

  56. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80: 371–378

    Article  CAS  Google Scholar 

  57. Davis AP, Capecchi MR (1994) Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120: 2187–2198

    CAS  Google Scholar 

  58. Mortlock DP, Post LC, Innis JW (1996) The molecular basis of hypodactily (Hd): a dele-tion in Hoxa 13 leads to arrest of digital arch formation. Nat Genet 13: 284–289

    Article  CAS  Google Scholar 

  59. Favier B, Rijli FM, Fromental-Romain C, Fraulob V, Chambon P, Pascal D (1996) Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 122: 449–460

    CAS  Google Scholar 

  60. Rountree R, Schoor M, Kingsley D (2000) Using GdfS control sequences to test the role of genes in joint development. International Conference Bone Morphogenetic Proteins 2000 June 7–11,2000, Granlibakken, Lake Tahoe, California

    Google Scholar 

  61. Sugiura T, Mitten G, Kawai S (1999) Minimal promoter components of the human growth/differentiation factor-5 gene. Biochem Biophys Res Commun 263: 707–713

    Article  CAS  Google Scholar 

  62. Persson M (1983) The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat 137: 591–599

    Google Scholar 

  63. Mitrovic D (1971) [Effect of pharmacological paralysis on the formation and evolution of articular fissures of the digital joints in chick embryo fleet] Effet de la paralysie pharmacologique sur la formation et l’évolution des fentes articulaires des articulations digitales des patter chez l’embryon de poulet. CR Acad Sci Hebd Seances Acad Sci D 273: 1748–1751

    CAS  Google Scholar 

  64. Mitrovic D (1982) Development of the articular cavity in paralysed chick embryos and in chick embryo limb buds cultured in chorioallantoic membranes. Acta Anatomica 113: 313–324

    Article  CAS  Google Scholar 

  65. Drachman DB, Sokoloff L (1966) The role of movement in embryonic joint development. Dev Biol 14: 401–420

    Article  Google Scholar 

  66. Lelkes G (1958) Experiments in vitro on the role of movement in the development of joints. J Embryol Exp Morphol 6: 183–186

    CAS  Google Scholar 

  67. Drachman DB, Sokoloff L (1966) The role of movement in embryonic joint development. Dev Biol 14: 401–420

    Article  Google Scholar 

  68. Mitrovic D (1971) [Physiological necrosis in the articular mesenchyma of rat and chick embryos] La necrose physiologique dans le mesenchyme articulaire des embryons de rat et de poulet. CR Acad Sci Hebd Seances Acad Sci D 273: 642–645

    CAS  Google Scholar 

  69. Mitrovic D (1972) [Presence of degenerated cells in the developing articular cavity of the chick embryo] Presence de cellules degenerees dans la cavite articulaire en developpement chez l’embryon de poulet. CR Acad Sci Hebd Seances Acad Sci D 275: 2941–2944

    CAS  Google Scholar 

  70. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K (1995) Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 242: 103–110

    Article  CAS  Google Scholar 

  71. Craig FM, Bayliss MT, Bentley G, Archer CW (1990) A role for hyaluronan in joint development. J Anat 171: 17–23

    CAS  Google Scholar 

  72. Hasty P, Bradley A, Morris JH, Edmonson DG, Venuti JM, Olson EN (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501–506

    Article  CAS  Google Scholar 

  73. Pitsillides AA, Archer CW, Prehm P, Bayliss MT, Edwards JC (1995) Alterations in hyaluronan synthesis during developing joint cavitation. J Histochem Cytochem 43: 263–273

    Article  CAS  Google Scholar 

  74. Nalin AM, Greenlee TK Jr, Sandell LJ (1995) Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn 203: 352–362

    Article  CAS  Google Scholar 

  75. Ganan Y, Macias D, Duterque Coquillaud M, Ros MA, Hurle JM (1996) Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of inter-digital cell death in the developing chick limb autopod. Development 122: 2349–2357

    CAS  Google Scholar 

  76. Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272: 738–741

    Article  CAS  Google Scholar 

  77. Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM (1999) Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206: 33–45

    Article  CAS  Google Scholar 

  78. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ (1998) Recapitu-lation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71: 65–76

    Article  CAS  Google Scholar 

  79. Liu Z, Luyten FP, Lammens J, Dequeker J (1999) Molecular signaling in bone fracture healing and distraction osteogenesis. Histol Histopathol 14: 587–595

    CAS  Google Scholar 

  80. Dell’Accio F, De Bari C, Luyten FP (1999) Molecular basis of joint development. Jpn J Rheumatol 9: 17–29

    Article  Google Scholar 

  81. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP (1998) Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum 41: 263–273

    Article  CAS  Google Scholar 

  82. Chubinskaya S, Merrihew C, Cs-Szabo G, Mollenhauer J, McCartney J, Rueger DC, Kuettner KE (2000) Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 48: 239–250

    Article  CAS  Google Scholar 

  83. Marinova-Mutafchieva L, Taylor P, Funa K, Maini RN, Zvaifler NJ (2000) Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint. Arthritis Rheum 43: 2046–2055

    Article  CAS  Google Scholar 

  84. Yazaki Y, Matsunaga S, Onishi T, Nagamine T, Origuchi N, Yamamoto T, Ishidou Y, Imamura T, Sakou T (1998) Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate. Anticancer Res 18: 2339–2344

    CAS  Google Scholar 

  85. Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T, Ten Dijke P (1999) Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification. J Bone Miner Res 14: 1145–1152

    Article  CAS  Google Scholar 

  86. Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, Moses HL (1997) Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 139: 451–452

    Article  Google Scholar 

  87. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224

    Article  CAS  Google Scholar 

  88. Vukicevic S, Luyten FP, Reddi AH (1989) Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci USA 86: 8793–8797

    Article  CAS  Google Scholar 

  89. Carrington JL, Chen P, Yanagishita M, Reddi AH (1991) Osteogenin (bone morphogenetic protein-3) stimulates cartilage formation by chick limb bud cells in vitro. Dev Biol 146: 406–415

    CAS  Google Scholar 

  90. Chen P, Carrington JL, Hammonds RG, Reddi AH (1991) Stimulation of chondrogenesis limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res 195: 509–515

    Article  CAS  Google Scholar 

  91. Flechtenmacher J, Huch K, Thonar EJ, Mollenhauer JA, Davies SR, Schmid TM, Puhl W, Sampath TK, Aydelotte MB, Kuettner KE (1996) Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum 39: 1896–1904

    Article  CAS  Google Scholar 

  92. Luyten FP, Yu YM, Yanagishita M, Vukicevic S, Hammonds RG, Reddi AH (1992) Nat-ural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem 267: 3691–3695

    CAS  Google Scholar 

  93. Luyten FP, Chen P, Paralkar V, Reddi AH (1994) Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res 210: 224–229

    Article  CAS  Google Scholar 

  94. Harrison ET Jr, Luyten FP, Reddi AH (1991) Osteogenin promotes reexpression of cartilage phenotype by dedifferentiated articular chondrocytes in serum-free medium. Exp Cell Res 192: 340–345

    Article  CAS  Google Scholar 

  95. Harrison ET Jr, Luyten FP, Reddi AH (1992) Transforming growth factor-beta: its effect on phenotype reexpression by dedifferentiated chondrocytes in the presence and absence of osteogenin. Cell Dev Biol 28A: 445–448

    CAS  Google Scholar 

  96. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  Google Scholar 

  97. Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periostealderived cells exhibit osteochondral potential in vivo. J Orthop Res 9: 465–476

    Article  CAS  Google Scholar 

  98. De Bari C, Dell’Accio F, Luyten FP (2000) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44: 85–95

    Article  Google Scholar 

  99. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928–1942

    Article  Google Scholar 

  100. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160: 909–918

    Article  CAS  Google Scholar 

  101. De Bari C, Dell’Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50: 142–150

    Article  CAS  Google Scholar 

  102. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5,6, and 7, members of the TGF-beta gene family. J Clin Invest 100: 321–330

    Article  CAS  Google Scholar 

  103. Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70: 51–54

    Article  CAS  Google Scholar 

  104. Lories RJ, Derese I, Ceuppens JL, Luyten FP (2003) Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum 48: 2807–2818

    Article  CAS  Google Scholar 

  105. Adams ME, Brandt KD (1991) Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 18: 428–435

    CAS  Google Scholar 

  106. van der Kraan PM, Vitters EL, van Beuningen HM, van den Berg WB (1992) Proteoglycan synthesis and osteophyte formation in “metabolically” and “mechanically” induced murine degenerative joint disease: an in-vivo autoradiographic study. Int J Exp Pathol 73: 335–350

    Google Scholar 

  107. Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, Moses HL (1997) Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 139: 541–552

    Article  CAS  Google Scholar 

  108. von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35: 806–811

    Article  Google Scholar 

  109. Weinstein M, Yang X, Deng C (2000) Functions of mammalian Smad genes revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 11: 49–58

    Article  CAS  Google Scholar 

  110. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6: 306–317

    Article  Google Scholar 

  111. Glansbeek HL, van Beuningen HM, Vitters EL, Morris EA, van der Kraan PM, van den Berg WB (1997) Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1alpha effects on proteoglycan synthesis and content. Arthritis Rheum 40: 1020–1102

    Article  CAS  Google Scholar 

  112. van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB (1994) in vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-beta 1: age-related differences. Ann Rheum Dis 53: 593–600

    Article  CAS  Google Scholar 

  113. Tomita T, Nakase T, Kaneko M, Tsuboi H, Takahi K, Hashimoto J, Takano H, Myoui A, Shi K, Yoshikawa H, Ochi T (2000) Distributions of BMP-2 and BMP receptors in the osteophyte of patients with osteoarthritis. Arthritis Rheum 43: S350

    Google Scholar 

  114. Zoricic S, Maric I, Bobinac D, Vukicevic S (2003) Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J Anat 202: 269–277

    Article  CAS  Google Scholar 

  115. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP (1998) Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum 41: 263–273

    Article  CAS  Google Scholar 

  116. Chubinskaya S, Merrihew C, Cs-Szabo G, Mollenhauer J, McCartney J, Rueger DC, Kuettner KE (2000) Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 48: 239–250

    Article  CAS  Google Scholar 

  117. Scharstuhl A, Vitters EL, van der Kraan MP, van den Berg WB (2003) Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum 48: 3442–3451

    Article  CAS  Google Scholar 

  118. Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H, Eggens U, Distler A, Sieper J (1995) Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 38: 499–505

    Article  CAS  Google Scholar 

  119. Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ (2003) Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am 85-A (Suppl 3): 59–66

    Google Scholar 

  120. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick JE (1999) Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 189: 1139–1148

    Article  CAS  Google Scholar 

  121. Yoshikawa H, Takaoka K, Hamada H, Ono K (1985) Clinical significance of bone morphogenetic activity in osteosarcoma. A study of 20 cases. Cancer 56: 1682–1687

    Article  CAS  Google Scholar 

  122. Yoshikawa H, Rettig WJ, Takaoka K, Alderman E, Rup B, Rosen V, Wozney JM, Lane JM, Huvos AG, Garin-Chesa P (1994) Expression of bone morphogenetic proteins in human osteosarcoma. Immunohistochemical detection with monoclonal antibody. Cancer 73: 85–91

    Article  CAS  Google Scholar 

  123. Yoshikawa H, Takaoka K, Masuhara K, Ono K, Sakamoto Y (1988) Prognostic signif-icance of bone morphogenetic activity in osteosarcoma tissue. Cancer 61: 569–573

    Article  CAS  Google Scholar 

  124. Guo W, Gorlick R, Ladanyi M, Meyers PA, Huvos AG, Bertino JR, Healey JH (1999) Expression of bone morphogenetic proteins and receptors in sarcomas. Clin Orthop 175–183

    Google Scholar 

  125. Mehdi R, Shimizu T, Yoshimura Y, Gomyo H, Takaoka K (2000) Expression of bone morphogenetic protein and its receptors in osteosarcoma and malignant fibrous histiocytoma. Jpn J Clin Oncol 30: 272–275

    Article  CAS  Google Scholar 

  126. Sulzbacher J, Birner P, Trieb K, Pichlbauer E, Lang S (2002) The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter. J Clin Pathol 55: 381–385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Luyten, F.P., Lories, R., De Valck, D., De Bari, C., Dell’Accio, F. (2004). Bone morphogenetic proteins and the synovial joints. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins: Regeneration of Bone and Beyond. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7857-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7857-9_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9598-9

  • Online ISBN: 978-3-0348-7857-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics