Skip to main content

Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia

  • Chapter
Genes and Mechanisms in Vertebrate Sex Determination

Part of the book series: Experientia Supplementum ((EXS,volume 91))

Summary

In this chapter the different categories of homomorphic and heteromorphic sex chromosomes, types of sex-determining mechanisms, known sex-linked genes, and data about sex-determining genes in the Amphibia have been compiled. Thorough cytogenetic analyses have shown that both XY/XX and ZW/ZZ sex chromosomes exist in the order Anura and Urodela. In some species quite unusual systems of sex determination have evolved (e.g. 0W-females/00-males or the co-existence of XY/XX and ZW/ZZ sex chromosomes within the same species). In the third order of the Amphibia, the Gymnophiona (or Apoda) there is still no information regarding any aspect of sex determination. Whereas most species of Anura and Urodela present undifferentiated, homomorphic sex chromosomes, there is also a considerable number of species in which an increasing structural complexity of the Y and W chromosomes exists. In various cases, the morphological differentiation of the sex chromosomes occurred as a result of quantitative and/or qualitative changes to the repetitive DNA sequences in the constitutive heterochromatin of the Y and W chromosomes. The greater the structural differences between the sex chromosomes, the lesser the extent of pairing in meiosis. No dosage compensation of the sex-linked genes in the somatic cells of the homogametic (XX or ZZ) individuals have been detected. The genes located to date on the amphibian sex chromosomes lead to the conclusion that there is no common ancestral or conserved sex-linkage group. In all amphibians, genetic sex determination (GSD) seems to operate, although environmental factors may influence sex determination and differentiation. Despite the accumulated evidence that GSD is operating in Anura and Urodela, there is little substantial information about how it functions. Although several DNA sequences homologous to the mammalian ZFY, SRY and SOX genes have been detected in the Anura or Urodela, none of these genes is an appropriate candidate to explain sex determination in these vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King M (1990) Amphibia. In: Animal cytogenetics, vol 4/2. pp 1–241, John B (ed), Gebrüder Borntraeger, Stuttgart

    Google Scholar 

  2. Schmid M (1983) Evolution of sex chromosomes and heterogametic systems in Amphibia. Differentiation 23 (Suppl): 13–22

    Google Scholar 

  3. Schmid M and Haaf T (1989) Origin and evolution of sex chromosomes in Amphibia: The cytogenetic data. In: Evolutionary mechanisms in sex determination, pp 37–56, Wachtel SS (ed), CRC Press, Boca Raton

    Google Scholar 

  4. Schmid M, Nanda I, Steinlein C, Kausch K, Haaf T and Epplen JT (1991) Sex-determining mechanisms and sex chromosomes in Amphibia. In: Amphibian cytogenetics and evolution, pp 393–430, Green DM, Sessions SK (eds), Academic Press, San Diego

    Google Scholar 

  5. Singh L (1974) Present status of sex chromosomes in amphibians. Nucleus 17: 17–27

    Google Scholar 

  6. Humphrey RR (1942) Sex of the offspring fathered by two Amblystoma females experimentally converted into males. Anat Rec 82 (Suppl 77): 469

    Google Scholar 

  7. Humphrey RR (1945) Sex determination in ambystomid salamanders: A study of the progeny of females experimentally converted into males. Am J Anat 76: 33–36

    Google Scholar 

  8. Humphrey RR (1957) Male homogamety in the Mexican axolotl: A study of the progeny obtained when germ cells of a genetic male are incorporated in a developing ovary. J Exp Zool 134: 91–101

    PubMed  CAS  Google Scholar 

  9. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin

    Google Scholar 

  10. Chang CY and Witschi E (1955) Breeding of sex-reversed males of Xenopus laevis Daudin. Proc Soc Exp Biol Med 89: 150–152

    PubMed  CAS  Google Scholar 

  11. Chang CY and Witschi E (1956) Gene control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93: 140–144

    PubMed  CAS  Google Scholar 

  12. Gallien L (1953) Inversion totale du sexe chez Xenopus laevis Daud. à la suite d’un traitement gynogène par le benzoate d’oestradiol administré pendant la vie larvaire. C RAcad Sci Ser D 237: 1565–1566

    CAS  Google Scholar 

  13. Kawamura T and Nishioka M (1977) Aspects of the reproductive biology of Japanese anurans. In: The reproductive biology of amphibians, pp 103–139, Taylor DH, Guttman SI (eds), Plenum Press, New York

    Google Scholar 

  14. Wachtel SS and Ohno S (1979) The immunogenetics of sexual development. Progr Med Genet 3: 109–142

    CAS  Google Scholar 

  15. Wachtel SS, Koo GC, Boyse EA (1975) Evolutionary conservation of H-Y (male) antigen. Nature 254: 270–272

    PubMed  CAS  Google Scholar 

  16. Wachtel SS, Wachtel GM, Nakamura D and Gilmour D (1983) H-Y antigen in the chicken. Differentiation 23 (Suppl): 107–115

    Google Scholar 

  17. Wolf U (1998) The serologically detected H-Y antigen revisited. Cytogenet Cell Genet 80: 232–235

    PubMed  CAS  Google Scholar 

  18. Engel W and Schmid M (1981) H-Y antigen as a tool for the determination of the heterogametic sex in Amphibia. Cytogenet Cell Genet 30: 130–136

    PubMed  CAS  Google Scholar 

  19. Zaborski P (1979) Sur la constance de l’expression de l’antigène H-Y chez le sexe hétérogamètique de quelques Amphibiens et sur la mise en évidence d’un dimorphisme sexuel de l’expression de cet antigène chez l’Amphibien Anoure Pelodytes punctatus. C R Acad Sci Ser D 289: 1153–1156

    CAS  Google Scholar 

  20. Hillis DM and Green DM (1990) Evolutionary changes of heterogametic sex in the phy-logenetic history of amphibians. J Evol Biol 3: 49–64

    Google Scholar 

  21. Elinson RP (1983) Inheritance and expression of a sex-linked enzyme in the frog, Rana clamitans. Biochem Genet 21: 435–442

    PubMed  CAS  Google Scholar 

  22. Schempp W and Schmid M (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83: 697–710

    PubMed  CAS  Google Scholar 

  23. Witschi E (1923) Ergebnisse der neueren Arbeiten über die Geschlechtschromosomen bei Amphibien. Z Induk Abstamm Vererbungsl 31: 287–312

    Google Scholar 

  24. Wright DA and Richards DM (1983) Two sex-linked loci in the leopard frog Rana pipiens. Genetics 103: 249–261

    PubMed  CAS  Google Scholar 

  25. Witschi W (1929) Studies on sex differentiation and sex determination in amphibians: III. Rudimentary hermaphroditism and Y chromosome Rana temporaria. J Exp Zool 54: 157–223

    Google Scholar 

  26. Schmid M (1980) Chromosome banding in Amphibia. V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size in Pyxicephalus adspersus (Anura, Ranidae). Chromosoma 80: 69–96

    CAS  Google Scholar 

  27. Schmid M and Bachmann K (1981) A frog with highly evolved sex chromosomes. Experientia 37: 242–244

    Google Scholar 

  28. Schmid M, Haaf T, Geile B and Sims S (1983) Chromosome banding in Amphibia. VIII. An unusual XY/XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 88: 69–82

    PubMed  CAS  Google Scholar 

  29. Schmid M, Haaf T, Geile B and Sims S (1983) Unusual heteromorphic sex chromosomes in a marsupial frog. Experientia 39: 1153–1155

    Google Scholar 

  30. Schmid M, Sims S, Haaf T and Macgregor HC (1986) Chromosome banding in Amphibia X. 18S and 28S ribosomal RNA genes, nucleolus organizers and nucleoli in Gastrotheca riobambae. Chromosoma 94: 139–145

    CAS  Google Scholar 

  31. Schmid M and Klett R (1994) Chromosome banding in Amphibia. XX. DNA replication patterns in Gastrotheca riobambae (Anura, Hylidae). Cytogenet Cell Genet 65: 122–126

    PubMed  CAS  Google Scholar 

  32. Schmid M, Steinlein C, Friedl R, de Almeida CG, Haaf T, Hillis DM et al (1990) Chromosome banding in Amphibia. XV Two types of Y chromosomes and heterochromatin hypervariability in Gastrotheca pseustes (Anura, Hylidae). Chromosoma 99: 413–423

    Google Scholar 

  33. Schmid M, Steinlein C, Feichtinger W, de Almeida CG, Duellman WE (1988) Chromosome banding in Amphibia. XIII. Sex chromosomes, heterochromatin and meiosis in marsupial frogs (Anura, Hylidae). Chromosoma 97: 33–42

    Google Scholar 

  34. Schmid M, Steinlein C and Feichtinger W (1989) Chromosome banding in Amphibia. XIV The karyotype of Centrolenella antisthenesi (Anura, Centrolenidae). Chromosoma 97: 434–438

    Google Scholar 

  35. Schmid M, Ohta S, Steinlein C and Guttenbach M (1993) Chromosome banding in Amphibia. XIX. Primitive ZW/ZZ sex chromosomes in Buergeria buergeri (Anura, Rhacophoridae). Cytogenet Cell Genet 62: 238–246

    PubMed  CAS  Google Scholar 

  36. Ponse K (1942) Sur la digametie du crapaud hermaphrodite. Rev Suisse Zool 49: 185–189

    Google Scholar 

  37. Iturra P and Veloso A (1981) Evidence for heteromorphic sex chromosomes in male amphibians (Anura: Leptodactylidae). Cytogenet Cell Genet 31: 108–110

    PubMed  CAS  Google Scholar 

  38. Schmid M, Steinlein C and Feichtinger W (1992) Chromosome banding in Amphibia. XVII. First demonstration of multiple sex chromosomes in amphibians: Eleutherodactylus maussi (Anura, Leptodactylidae). Chromosoma 101: 284–292

    PubMed  CAS  Google Scholar 

  39. Mahony MJ (1991) Heteromorphic sex chromosomes in the Australian frog Crinia bilingua (Anura: Myobatrachidae). Genome 34: 334–337

    Google Scholar 

  40. Green DM (1988) Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: Extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97: 55–77

    Google Scholar 

  41. Green DM (1988) Heteromorphic sex chromosomes in the rare and primitive frog Leiopelma hamiltoni from New Zealand. J Heredity 79: 165–169

    Google Scholar 

  42. Sessions SK and Wiley JE (1985) Chromosome evolution in salamanders of the genus Necturus. Brimleyana 10: 37–52

    Google Scholar 

  43. Sessions SK (1980) Evidence for a highly differentiated sex chromosome heteromorphism in the salamander Necturus maculosus (Rafinesque). Chromosoma11: 157–168

    Google Scholar 

  44. Lacroix J-C (1968) Étude descriptive des chromosomes en écouvillon dans le genre Pleu-rodeles (Amphibien, urodèle). Ann Embryol Morphog 1: 179–202

    Google Scholar 

  45. Lacroix J-C (1968) Variations expérimentales ou spontanées de la morphologie et de l’organisation des chromosomes en écouvillon dans le genre Pleurodeles (Amphibien, urodèle). Ann Embryol Morphog 1: 205–248

    Google Scholar 

  46. Lacroix J-C (1970) Mise en évidence sur les chromosomes en écouvillon de Pleurodeles poireti Gervais, amphibien urodèle, d’une structure liée au sexe, identifiant le bivalent sexual et marquant le chromosome W. C R Acad Sci Ser D 271: 102–104

    CAS  Google Scholar 

  47. Ferrier V, Jaylet A, Cayrol C, Gasser F and Buisan J-J (1980) Étude électrophorétique des peptidases érythrocytaires chez Pleurodeles waltlii (Amphibien Urodèle): Mise en evidence d’une liaison avec le sexe. C RAcad Sci Ser D 290: 571

    CAS  Google Scholar 

  48. Ferrier V, Gasser F, Jaylet A and Cayrol C (1983) A genetic study of various enzyme polymorphisms in Pleurodeles waltlii (urodele amphibian). II-peptidases: Demonstration of sex-linkage. Biochem Genet 21: 535–549

    PubMed  CAS  Google Scholar 

  49. Schmid M, Olert J and Klett C (1979) Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma 71: 29–55

    Google Scholar 

  50. Mancino G, Ragghianti M and Bucci-Innocenti S (1977) Cytotaxonomy and cytogenetics in European newt species. In: The reproductive biology of amphibians, pp 411–447, Taylor DH, Guttman SI (eds), Plenum Press, New York

    Google Scholar 

  51. Sims SH, Macgregor HC, Pellat PS and Horner HA (1984) Chromosome 1 in crested and marbled newts (Triturus): An extraordinary case of heteromorphism and independent chromosome evolution. Chromosoma 89: 169–185

    Google Scholar 

  52. Sessions SK and Kezer J (1987) Cytogenetic evolution in the plethodontid salamander genus Aneides. Chromosoma 95: 17–30

    Google Scholar 

  53. Kezer J and Macgregor HC (1971) A fresh look at meiosis and centromeric heterochromatin in the red-backed salamander, Plethodon c. cinereus (Green). Chromosoma 33: 146–166

    PubMed  CAS  Google Scholar 

  54. León PE and Kezer J (1978) Localization of 5S RNA genes on chromosomes of plethodontid salamanders. Chromosoma 65: 213–230

    Google Scholar 

  55. Mancino G (1965) Osservazioni cariologiche sull’ Urodelo della Sardegna Euproctus platycephalus: Morfologia dei bivalenti meiotici e dei lampbrush chromosomes. Rend Accad Naz Lincei 39: 540–548

    Google Scholar 

  56. Morescalchi A (1975) Chromosome evolution in the caudate Amphibia. In: Evolutionary biology, vol 8, pp 338–387, Dobzhansky T, Hecht MK, Steere WC (eds), Plenum Press, New York

    Google Scholar 

  57. Schmid M (1980) Chromosome evolution in Amphibia. In: Cytogenetics of vertebrates, pp 4–27, Müller H (ed), Birkhäuser, Basel

    Google Scholar 

  58. Nardi I, Andronico F, De Lucchini S and Batistoni R (1986) Cytogenetics of the European plethodontid salamanders of the genus Hydromantes (Amphibia, Urodela). Chromosoma 94: 377–388

    CAS  Google Scholar 

  59. Morescalchi A and Serra V (1974) DNA renaturation kinetics in some paedogenetic urodeles. Experientia 30: 487–489

    PubMed  CAS  Google Scholar 

  60. Stephenson EM, Robinson ES and Stephenson NG (1972) Karyotype variation within the genus Leiopelma (Amphibia, Anura). Can J Genet Cytol 14: 691–702

    PubMed  CAS  Google Scholar 

  61. Bull JJ (1983) Evolution of sex-determining mechanisms. Benjamin/Cumming, Menlo Park, California

    Google Scholar 

  62. Nishioka M, Miura I and Saitoh K (1993) Sex chromosomes of Rana rugosa with special reference to local differences in sex-determining mechanism. Sci Rep Lab Amphibian Biol, Hiroshima Univ 12: 55–81

    Google Scholar 

  63. Nishioka M, Kodama Y, Sumida M and Ryuzaki M (1993) Systematic evolution of 40 populations of Rana rugosa distributed in Japan elucidated by electrophoresis. Sci Rep Lab Amphibian Biol, Hiroshima Univ 12: 83–131

    Google Scholar 

  64. Nishioka M, Hanada H, Miura I and Ryuzaki M (1994) Four kinds of sex chromosomes in Rana rugosa. Sci Rep Lab Amphibian Biol, Hiroshima Univ 13: 1–34

    Google Scholar 

  65. Nishioka M and Hanada H (1994) Sex of reciprocal hybrids between the Murakami (ZZ-ZW type) population and Hamakita (XX-XY type) population in Rana rugosa. Sci Rep Lab Amphibian Biol, Hiroshima Univ 13: 35–50

    Google Scholar 

  66. Miura I, Ohtani H, Hanada H, Ichikawa Y, Kashiwagi A and Nakamura M (1997) Evidence for two successive pericentric inversions in sex lampbrush chromosomes of Rana rugosa (Anura: Ranidae). Chromosoma 106: 178–182

    PubMed  CAS  Google Scholar 

  67. Miura I (1994) Sex chromosome differentiation in the Japanese brown frog, Rana japonica. I. Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome no. 4 of the Wakuya population. Zool Sci 11: 797–806

    Google Scholar 

  68. Miura I (1994) Sex chromosome differentiation in the Japanese brown frog, Rana rugosa. II. Sex-linkage analyses of the nucleolar organizer regions in chromosomes no. 4 of the Hiroshima and Saeki populations. Zool Sci 11: 807–815

    Google Scholar 

  69. Dournon C, Guillet F, Boucher D and Lacroix JC (1984) Cytogenetic and genetic evidence of male sexual inversion by heat treatment in the newt Pleurodeles poireti. Chromosoma 90:261–264

    CAS  Google Scholar 

  70. Labrousse M, Guillemin C and Gallien L (1972) Mise en évidence sur les chromosomes de l’amphibien Pleurodeles waltlii Michah. de secteurs d’affinité différente pour le colorant de Giemsa à pH 9. C R Acad Sci Ser D 274: 1063–1065

    CAS  Google Scholar 

  71. Bailly S (1976) Localisation et signification des zones Q observées sur les chromosomes mitotiques de l’amphibien Pleurodeles waltlii Michah. après coloration par la moutarde de quinacrine. Chromosoma 54: 61–68

    PubMed  CAS  Google Scholar 

  72. Beçak W, Beçak ML, Nazareth HRS and Ohno S (1964) Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma 15: 606–617

    PubMed  Google Scholar 

  73. Singh L, Purdom IF and Jones KW (1976) Satellite DNAs and evolution of sex chromosomes. Chromosoma 59: 43–62

    PubMed  CAS  Google Scholar 

  74. Jones KW and Singh L (1981) Conserved repeated DNA sequences in vertebrate sex chromosomes. Hum Genet 58: 46–53

    PubMed  CAS  Google Scholar 

  75. Jones KW (1983) Evolutionary conservation of sex-specific DNA sequences. Differentiation 23 (Suppl): 56–59

    CAS  Google Scholar 

  76. Jones KW (1984) The evolution of sex chromosomes and their consequences for the evolutionary process. In: Chromosomes today, vol 8, pp 241–255, Bennett MD, Gropp A, Wolf U (eds), Allen and Unwin, London

    Google Scholar 

  77. Green DM and Sharbel TF (1988) Comparative cytogenetics of the primitive frog, Leiopelma archeyi (Anura, Leiopelmatidae). Cytogenet Cell Genet 47: 212–216

    Google Scholar 

  78. Baverstock PR, Adams M, Polkinghorne RW and Gelder M (1982) A sex-linked enzyme in birds: Z-chromosome conservation but no dosage compensation. Nature 296: 763–766

    PubMed  CAS  Google Scholar 

  79. Schmid M, Enderle E, Schindler D and Schempp W (1989) Chromosome banding and DNA replication patterns in bird karyotypes. Cytogenet Cell Genet 52: 139–146

    PubMed  CAS  Google Scholar 

  80. Nanda I, Shan Z, Schartl M, Burt DW, Koehler M, Nothwang H-G et al (1999) 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genet 21:258–259

    PubMed  CAS  Google Scholar 

  81. Wright DA, Richards CM, Frost JS, Camozzi AM and Kunz BJ (1983) Genetic mapping in amphibians. In: Isozymes: Current topics in biological and medical research, vol 10, pp 287–311, Alan R Liss, New York

    Google Scholar 

  82. Elinson RP (1981) Genetic analysis of developmental arrest in an amphibian hybrid (Rana catesbeiana, Rana clamitans). Dev Biol 81: 167–176

    PubMed  CAS  Google Scholar 

  83. Sumida M and Nishioka M (1994) Geographic variability of sex-linked loci in the Japanese brown frog Rana japonica. Sci Rep Lab Amphibian Biol, Hiroshima Univ 13: 173–195

    Google Scholar 

  84. Nishioka M and Sumida M (1994) The position of sex-determining genes in the chromosomes of Rana nigromaculata and Rana brevipoda. Sci Rep Lab Amphibian Biol, Hiroshima Univ 13: 51–97

    Google Scholar 

  85. Graf J-D (1989) Sex linkage of malic enzyme in Xenopus laevis. Experientia 45: 194–196

    PubMed  CAS  Google Scholar 

  86. Graf J-D (1989) Genetic mapping in Xenopus laevis: Eight linkage groups established. Genetics 123: 389–398

    PubMed  CAS  Google Scholar 

  87. Pardue ML and Gall J (1970) Chromosomal localization of mouse satellite DNA. Science 168: 1365–1368

    Google Scholar 

  88. Singh L, Purdom IF and Jones KW (1980) Chromosome satellite DNA. Evolution and conservation. Chromosoma 79: 137–157

    PubMed  CAS  Google Scholar 

  89. Epplen JT, McCarry JR, Sutow S and Ohno S (1982) Base sequence of a cloned snake W chromosome fragment and identification of a male-putative mRNA in the mouse. Proc Natl Acad Sci USA 79: 3798–3802

    PubMed  CAS  Google Scholar 

  90. Jones KW and Singh L (1985) Snakes and the evolution of sex chromosomes. Trends Genet 1: 55–61

    Google Scholar 

  91. Nanda I, Feichtinger W, Schmid M, Schröder JH, Zischler H and Epplen JT (1990) Simple repetitive sequences are associated with the differentiation of the sex chromosomes in the guppy fish. J Mol Evol 30: 456–462

    CAS  Google Scholar 

  92. Epplen JT (1988) On simple repeated GATA/GACA sequences in animal genomes: A critical reappraisal. J Hered 79: 409–417

    PubMed  CAS  Google Scholar 

  93. Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. J Exp Zool 281: 373–399

    PubMed  CAS  Google Scholar 

  94. Solari AJ (1994) Sex chromosomes and sex determination in vertebrates. CRC Press, Boca Raton

    Google Scholar 

  95. Dodd JM (1960) Genetic and environmental aspects of sex determination in cold blooded vertebrates. Mem Soc Endocrinol 7: 17–44

    Google Scholar 

  96. Gallien L (1974) Intersexuality. In: Physiology of the Amphibia. Academic Press, New York, 523–549

    Google Scholar 

  97. Dournon C and Houillon C (1984) Démonstration génétique de l’inversion functionelle du phénotype sexuel femelle sous l’action de la température d’élevage chez l’amphibien urodéle: Pleurodeles waltlii Michah. Reprod Nutr Dev 24: 361–378

    Google Scholar 

  98. Dournon C, Houillon C and Pieau C (1990) Temperature sex-reversal in amphibians and reptiles. Int J Dev Biol 34: 81–92

    PubMed  CAS  Google Scholar 

  99. Grafe TU, Linsenmair KE (1989) Protogynous sex change in the reed frog Hyperolius viridiflavus. Copeia 1989: 1024–1029

    Google Scholar 

  100. Collenot A, Durand D, Lauther M, Dorazi R, Lacroix J-C and Dournon C (1994) Spontaneous sex reversal in Pleurodeles waltl (urodele amphibia): Analysis of its inheritance. Genet Res 64: 43–50

    Google Scholar 

  101. Schmid et al; unpublished

    Google Scholar 

  102. Ohta S (1986) Sex determining mechanism in Buergeria buergeri (Schlegel). I. Heterozygosity of chromosome pair no. 7 in the female. Sci rep Lab Amphibian Biol, Hiroshima Univ 8: 29–43

    Google Scholar 

  103. Ohta S (1987) Sex determining mechanism in Buergeria buergeri (Schlegel). II. The effects of sex hormones on the differentiation of gonads and the offspring of sex-reversed females. Sci Rep Lab Amphibian Biol, Hiroshima Univ 9: 213–238

    Google Scholar 

  104. Ohta S, Sumida M and Nishioka M (1999) Sex-determining mechanism in Buergeria buergeri (Anura, Rhacophoridae). III. Does the ZZW triploid frog become female or male? J Exp Zool 283: 295–306

    PubMed  CAS  Google Scholar 

  105. Page DC, Mosher R, Simpson EM, Fisher EMC, Mardon G, Pollack J et al (1987) The sex-determining region of the human Y-chromosome encodes a finger protein. Cell 51: 1091–1164

    PubMed  CAS  Google Scholar 

  106. Page DC (1988) Is ZFY the sex-determining gene on the human Y-chromosome? Philos Trans R Soc London 322: 155–157

    CAS  Google Scholar 

  107. Sinclair AH, Foster JW, Spencer JA, Page DC, Palmer M, Goodfellow PN et al (1988) Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336: 780–783

    PubMed  CAS  Google Scholar 

  108. Palmer MS, Sinclair AH, Berta P, Ellis NA, Goodfellow PN, Abbas NE et al (1989) Genetic evidence that ZFY is not the testis-determining factor. Nature 342: 937–939

    PubMed  CAS  Google Scholar 

  109. Koopman P, Gubbay J, Collignon J and Lovell-Badge R (1989) Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342: 940–942

    PubMed  CAS  Google Scholar 

  110. Zeyl CW, Green DM and Nishioka Y; unpublished

    Google Scholar 

  111. Bull JJ, Hillis DM and O’Steen S (1988) Mammalian ZFY sequences exist in reptiles regardless of sex-determining mechanisms. Science 242: 567–569

    PubMed  CAS  Google Scholar 

  112. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths Bl, Smith MJ et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244

    PubMed  CAS  Google Scholar 

  113. Koopman P, Münsterberg A, Capel B, Vivian N and Lovell-Badge R (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348: 450–452

    PubMed  CAS  Google Scholar 

  114. Koopman P, Gubbay J, Vivian N, Goodfellow PN and Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351: 117–121

    PubMed  CAS  Google Scholar 

  115. Tiersch TR, Mitchell MJ and Wachtel SS (1991) Studies on the phylogenetic conservation of the SRY gene. Hum Genet 87: 571–573

    PubMed  CAS  Google Scholar 

  116. Chardard D, Chesnel A, Gozc C, Dournon C and Berta P (1993) PW Sox-1: The first member of the SOX gene family in urodeles. Nucleic Acids Res 21: 3576–3578

    PubMed  CAS  Google Scholar 

  117. Takase M, Noguchi S and Nakamura M (2000) Two Sox9 messenger RNA isoforms: Isolation of cDNAs and their expresion during gonadal development in the frog Rana rugosa. FEBS Lett 466: 249–254

    CAS  Google Scholar 

  118. Miyata S, Miyashita K and Hosoyama Y (1996) SRY-related genes in Xenopus oocytes. Biochim Biophys Acta 1308: 23–27

    PubMed  Google Scholar 

  119. Hiraoka Y, Komatsu N, Sakai Y, Ogawa M, Shiozawa M and Aiso S (1997) XLS 13A and XLS13B: SRY-related genes of Xenopus laevis. Gene 197: 65–71

    PubMed  CAS  Google Scholar 

  120. Schmid M and Steinlein C (1991) Chromosome banding in Amphibia. XVI. High-resolution replication banding patterns in Xenopus laevis. Chromosoma 101: 123–132

    PubMed  CAS  Google Scholar 

  121. Foster JW and Graves JAM (1994) An SRY-related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA 91: 1927–1931

    PubMed  CAS  Google Scholar 

  122. Stenovic M, Lovell-Badge R, Collignon J and Goodfellow PN (1993) SOX3 is an X-linked gene related to SRY. Hum Mol Genet 2: 2013–2018

    Google Scholar 

  123. Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D and Rastan S (1996) A comparison of the properties of SOX3 with SRY and two related genes, SOX1 and SOX2. Development 122: 509–520

    PubMed  CAS  Google Scholar 

  124. Koyano S, Ito M, Takamatsu N, Takiguchi S and Shiba T (1997) The Xenopus SOX3 gene expressed in oocytes of early stages. Gene 188: 101–107

    PubMed  CAS  Google Scholar 

  125. Penzel R, Oschwald R, Chen YL, Tacke L and Grunz H (1997) Characterisation and early embryonic expression of a neural specific transcription factor XSOX3 in Xenopus laevis. Int J Dev Biol 41: 667–677

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Schmid, M., Steinlein, C. (2001). Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: Scherer, G., Schmid, M. (eds) Genes and Mechanisms in Vertebrate Sex Determination. Experientia Supplementum, vol 91. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7781-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7781-7_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7783-1

  • Online ISBN: 978-3-0348-7781-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics