Skip to main content

Generation of Variability at VNTR Loci in Human DNA

  • Chapter
DNA Fingerprinting: Approaches and Applications

Part of the book series: Experientia Supplementum ((EXS,volume 58))

Summary

Our laboratory has constructed linkage maps of the human chromosomes to use as a tool towards the goal of cloning by position the genes responsible for genetic disorders. Construction of the map required the development of polymorphic marker systems in the form of Restriction Fragment Length Polymorphisms (RFLPs). Work by Yusuke Nakamura in the laboratory led to the identification of more than 200 highly informative Variable Number Tandem Repeat (VNTR) markers. The hypervariable nature of these marker loci has allowed individualization at the DNA level. Techniques for individualization have subsequently been adopted by diverse fields including gene mapping, cancer genetics and forensic biology. These markers have also become a resource to test hypotheses as to how the VNTRs generate their intrinsic variability. We have demonstrated that the hypothesis that VNTRs generate their variability by unequal exchange between homologous chromosomes is incorrect (Wolff et al., 1988; Wolff et al., 1989). Our data are consistent with intrachromosomal models such as unequal sister chromatid exchange and replication slippage. Using DNA derived from nonhuman primate species, we have tested hypotheses that try to explain the sequence relationship at dispersed VNTR loci. Our data reveal that VNTR loci are most likely not related by transposition but rather arose independently at multiple loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, G. I., Selby, M. J., and Rutter, W. J. (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35.

    Article  Google Scholar 

  • Botstein, D., White, R., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    Google Scholar 

  • Burke, T., Davies, N. B., Bruford, M. W., and Hatchwell, B. J. (1989) Parental care and mating behavior of polyandrous dunnocks Prunella modulais related to paternity by DNA Fingerprinting. Nature 338: 249–251.

    Article  Google Scholar 

  • Capon, D. J., Chen, E. Y., Levinson, A. D. Seeburg, P. H., and Goeddel, D. V. (1983) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302: 33–37.

    Article  Google Scholar 

  • Dallas, J. F. (1988) Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe. Proc. Natl. Acad. Sci. USA 85: 6831–6835.

    Article  Google Scholar 

  • Dover, G. (1982) Molecular drive-a cohesive mode of species evolution. Nature 299: 111–117.

    Article  Google Scholar 

  • Economou, E. P., Bergen, A. W., and Antonarakis, S. E. (1989) Novel DNA polymorphic system: Variable poly A tract 3’ to Alu I repetitive elements. Amer. J. Hum. Genet. (Suppl.) 45: A138.

    Google Scholar 

  • Georges, M., Lequarre, A. S., Castelli, M., and Vasart, G. (1988) DNA fingerprint in domestic animals using four different minisatellite probes. Cytogenet. Cell Genet. 47: 127–131.

    Article  Google Scholar 

  • Goodbourn, S. E. Y., Higgs, D. R. Clegg, J. B., and Weatherall, D. J. (1983) Molecular basis of length polymorphism in the human zeta-globin gene complex. Proc. Natl. Acad. Sci. USA 80: 5022–5026.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable `minisatellite’ regions in human DNA. Nature 314: 67–73.

    Article  Google Scholar 

  • Jeffreys, A. J., Royle, N. J., Wilson, V., and Wong, Z. (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  Google Scholar 

  • Kan, Y. and Dozy, A. (1978) Antenatal diagnosis of sickle-cell anemia by DNA analysis of amniotic-fluid cells. Lancet 2: 910–912.

    Google Scholar 

  • Lathrop, G. M., Lalouel, J.-M., Julier, C., and Ott, J. (1984) Strategies for multipoint linkage analysis in humans. Proc. Natl. Acad. Sci. USA 81: 3443–3446.

    Article  Google Scholar 

  • Litt, M. and Luty, J. A. (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Amer. J. Hum. Genet. 44: 397–401.

    Google Scholar 

  • Maniatis, T., Hardison, R., Lacy, E., et al. (1978) The isolation of structural genes from libraries of eucaryotic DNA. Cell 15: 687–701.

    Article  Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connell, P. Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White, R. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 237: 1616–1622.

    Article  Google Scholar 

  • Nakamura, Y., Carlson, M., Krapcho, K., Kanamori, M., and White, R. (1988a) New approach for isolation of VNTR markers. Am. J. Hum. Genet. 43: 854–859.

    Google Scholar 

  • Nakamura, Y., Lathrop, M., O’Connell, P., Leppert, M., Barker, D., Wright, W., Skolnick, M., Kondoleon, S., Litt, M., Lalouel J.-M., and White, R. (1988b) A mapped set of DNA markers for chromosome 17. Genomics 2: 302–309.

    Article  Google Scholar 

  • O’Connell, P., Lathrop, G. M., Nakamura, Y., Leppert, M. L., Ardinger, R. H., Murray, J. C., Lalouel, J. -M., and White, R. (1989) Twenty-eight loci form a continuous linkage map of markers for human chromosome 1. Genomics 4: 12–20.

    Article  Google Scholar 

  • Odelberg, S. J., Plaetke, R., Eldridge, J. R., Ballard, L., O’Connell, P., Nakamura, Y., Leppert, M., Lalouel, J.-M., and White, R. (1989) Characterization of eight VNTR Loci by agarose gel electrophoresis. Genomics 5: 915–924.

    Article  Google Scholar 

  • Pratt, J. W. and Gibbons, J. D. (1981) “Concepts of Nonparametric Theory”. Springer-Verlag, New York.

    Book  Google Scholar 

  • Proudfoot, N. J., Gill, A., and Maniatis, T. (1982) The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell 31: 553–563.

    Article  Google Scholar 

  • Royle, N. J., Clarkson, R. E., Wong, Z., and Jeffreys, A. J. (1988) Clustering of hypervariable minsatellites in the proterminal region of human autosomes. Genomics 3: 352–360.

    Article  Google Scholar 

  • Smith, G. P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.

    Article  Google Scholar 

  • Spandidos, D. A. and Holmes, L. (1987) Transcriptional enhancer activity in the variable tandem repeat DNA sequence downstream of the Ha-rasI. FEBS Lett. 218: 41–46.

    Article  Google Scholar 

  • Steinmetz, M., Stephan, D., and Lindahl, K. F. (1986) Gene organization and recombinational hotspots in the Murine Major Histocompatibility Complex. Cell 44: 895–904.

    Article  Google Scholar 

  • Ullrich, A., Dull, T. J., Gray, A., Philips, J. A. III, and Peter, S. (1982) Variation in the sequence and modification state of the human insulin gene flanking regions. Nucleic Acids Research 10: 2225–2240.

    Article  Google Scholar 

  • Vogelstein, B., Fearon, E. R., Kern, S. E., Hamilton, S. R., Preisinger, A. C., Nakamura, Y., and White, R. (1989) Allelotype of colorectal carcinomas. Science 224: 207–211.

    Article  Google Scholar 

  • Weber, J. L. and May, P. E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Amer. J. Hum. Genet. 44: 388–396.

    Google Scholar 

  • Wolff, R. K., Nakamura, Y., and White, R. (1988) Molecular characterization of a spontaneously generated new allele at a VNTR locus: no exchange of flanking DNA sequence. Genomics 3: 347–351.

    Article  Google Scholar 

  • Wolff, R. K., Plaetke, R., Jeffreys, A. J., and White, R. (1989) Unequal crossingover is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5: 382–384.

    Article  Google Scholar 

  • Wong, Z., Wilson, V., Patel, P., Povey, S., and Jeffreys, A. J. (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann. Hum. Genet. 51: 269–288.

    Google Scholar 

  • Wyman, A. R. and White, R. (1980) A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77: 6754–6758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wolff, R., Nakamura, Y., Odelberg, S., Shiang, R., White, R. (1991). Generation of Variability at VNTR Loci in Human DNA. In: Burke, T., Dolf, G., Jeffreys, A.J., Wolff, R. (eds) DNA Fingerprinting: Approaches and Applications. Experientia Supplementum, vol 58. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7312-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7312-3_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7314-7

  • Online ISBN: 978-3-0348-7312-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics