Skip to main content

Modeling the Response of Terrestrial Vegetation to Climate Change in the Tropics

  • Chapter
Tropical Forests in Transition

Part of the book series: Advances in Life Sciences ((ALS))

Abstract

The conservation and management of tropical ecosystems must consider the temporal and spatial dynamics of vegetation. An understanding of the patterns and processes of ecosystems as they relate to environmental gradients is of particular importance in the face of potential global climate change as a result of increasing atmospheric levels of CO2.

Three classes of models relating vegetation pattern to climate and their application to climate change research are discussed.

The potential consequences of global climate change on the distribution of vegetation in the tropics are examined using the vegetation-climate classification model of Holdridge. The distribution of major biome-types was simulated under both current climate and four climate change scenarios based on general circulation models. The changes in global climate patterns have a major influence on the distribution of tropical ecosystems. All four scenarios predict a decrease in the areal coverage of desert. The scenarios differ, however, in their predictions of forest distribution. Differences among the scenarios are due to the general uncertainty with regard to predictions of precipitation patterns in the tropical zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonan GB (1990a) Carbon and nitrogen cycling in North American boreal forests. I. Litter quality and soil thermal effects in interior Alaska. Biogeochemestry 10: 1–28

    Google Scholar 

  • Bonan GB (1990b) Carbon and nitrogen cycling in North American boreal forests. II. Biogeographic patterns. Canadian J For Res 20: 1077–1088

    Article  Google Scholar 

  • Bonan GB, Shugart HH, Urban DL (1990) The sensitivity of some high-latitude boreal forests to climatic parameters. Climatic Change 16: 9–29

    Article  Google Scholar 

  • Bonan GB, Hayden BP (1990) Using a forest stand simulation model to examine the ecological and climatic significance of the late-Quaternary pine-spruce pollen zone in eastern Virginia, U.S.A. Quat Res 33: 204–218

    Google Scholar 

  • Box EO (1978) Ecoclimatic determination of terrestrial vegetation physiognomy. , 381 pp., Univ. of N.C., Chapel Hill, N.C.

    Google Scholar 

  • Box EO (1981) Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, Junk: The Hague

    Google Scholar 

  • Davis MB (1982) Quaternary history and the stability of forest communities. In: Forest Succession: Concepts and Application ( DC West, HH Shugart & DB Botkin, eds.) New York: Springer-Verlag

    Google Scholar 

  • Davis MB (1984) Climatic instability, time lags and community disequilibrium. In: Community Ecology ( J Diamond and TJ Case, eds.) pp 269–284. New York: Harper and Row

    Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Climatic Change 15: 75–82

    Article  Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7: 29–43

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A chemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149: 78–90

    Article  Google Scholar 

  • Grisebach A (1838) Ăśber den EinfluĂź des Chinas auf die Begrenzung der natĂĽirlichen Floren. Linnaea 12: 159–200

    Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G,Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: Analysis of feedback mechanisms. In: (JE Hansen & T Takahashi, eds.) Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, Maurice Ewing Ser., vol. 5

    Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Russell G, Lebedeff S, Reudy R, Stone P (1988) Global climate changes as forecast by the GISS-3-D model. J Geophys Res 93: 9341–9364

    Article  Google Scholar 

  • Holdridge L R (1947) Determination of world formulations from simple climatic data. Science 105: 367–368

    Article  Google Scholar 

  • Holdridge L R (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130: 572

    Article  Google Scholar 

  • Holdridge L R (1967) Life Zone Ecology. Tropical Science Center, San Jose Humboldt A von ( 1867 ) Ideen zu einem Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. TĂĽbingen

    Google Scholar 

  • Humboldt A von (1867) Ideen zu einer Geographie der Pflanzen nebst einerm Naturgemilde der Tropenländer. TĂĽbingen

    Google Scholar 

  • Köppen W (1900) Versuch einer Klassification der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Z 6: 593–611

    Google Scholar 

  • Köppen W (1918) Klassification der Klimate nach Temperatur, Niederschlag und Jahreslauf. Petermanns Geogr Mitt 64: 193–203

    Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Handbuch der Klimatologie (W Köppen & R Geiger, eds.) vol. 1, part C. Berlin: Gebr Bomtraeger

    Google Scholar 

  • Leemans R, Cramer W (1990) The IIASA climate database for land area on a grid of 0.5° resolution. WP-41, International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate to an increase in CO2 concentration in the atmosphere. J Geophy Res 8: 5529–5554

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1987) Large scale changes in soil wetness induced by an increase in carbon dioxide. J Atm Sci 44: 1211–1235

    Article  Google Scholar 

  • Mitchell JFB (1983) The seasonal response of a general circulation model to changes in CO2 and sea temperature. Q J Roy Met Soc 109: 113–152

    Google Scholar 

  • Monteith JL (1973) Principles of Environmental Physics. London: E Arnold

    Google Scholar 

  • Myers N (1980) The present status and future prospects of tropical moist forests. Environ Conservation 7: 101–114

    Article  Google Scholar 

  • Nemani RR, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agr For Met 44: 245–260

    Article  Google Scholar 

  • Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343: 51–53

    Article  Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334: 55–58

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc London, Series A, 193: 120–145

    Google Scholar 

  • Peteet D (1987) Late Quaternary vegetation and climatic history of the montane and lowland tropics. In: pp. 72–76 ( C Rosenzweig & R Dickinson, eds.) Climate-Vegetation Interactions. University Corporation for Atmospheric Studies: Boulder, CO

    Google Scholar 

  • Prentice KC, Fung I Y (1990) Bioclimatic simulations test the sensitivity of terrestrial carbon storage to perturbed climates. Nature 346: 48–51

    Article  Google Scholar 

  • Prentice KC (1990) Bioclimatic distribution of vegetation for GCM studies. J Geophy Res Priestley, CHB & Taylor RJ 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100: 81–92

    Google Scholar 

  • Priestley, CHB, Taylor RJ 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100: 81–92

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional application: Hydrologic balance, canopy gas exchange and primary production processes. Ecol Modelling 42: 125–154

    Google Scholar 

  • Running SW, Nemani R, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 69: 40–45

    Google Scholar 

  • Schlesinger M, Zhao Z (1988) Seasonal climatic changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/mixed layer ocean model. Oregon St. U., Corvallis, OR, Climate Research Institute

    Google Scholar 

  • Sedjo RA, Solomon AM (1989) Climate and forests. In: Greenhouse Warming: Abatement and Adaptation, (eds., Rosenberg NJ, Easterling WE, Crosson PR & Darmstadter J ), Resources For The Future, Washington, D.C.

    Google Scholar 

  • Shugart HH (1984) A Theory of Forest Dynamics. New York: Springer-Verlag

    Book  Google Scholar 

  • Shugart HH, West DC (1980) Forest succession models. BioScience 30: 308–313

    Article  Google Scholar 

  • Smith TM, Leeman R, Shugart HH (1992a) Sensitivity of terrestrial carbon storage to CO2-induced climate change: Comparison of four scenarios based on general circulation models. Climatic Change. (in press)

    Google Scholar 

  • Smith TM, Shugart HH, Bonan GB, Smith J B (1992b) Modeling the potential response of vegetation to global climate change. Adv Ecol Res 22 (in press)

    Google Scholar 

  • Solomon AM, Delcourt HR, West DC, Blasings TJ (1980) Testing a simulation model for reconstruction of prehistoric forest-stand dynamics. Quat Res 14: 275–293

    Article  Google Scholar 

  • Solomon AM, West DC, Solomon JA (1981) Simulating the role of climate change and species immigration in forest succession. In: Forest Succession ( DC West, HH Shugart & DB Botkin, eds.), pp 154–177. Springer-Verlag: New York

    Chapter  Google Scholar 

  • Solomon AM, Shugart HH (1984) Integrating forest-stand simulations with paleoecological records to examine longterm forest dynamics. In: State and Change of Forest Ecosystems: Indicators in Current Research (GI Agren, ed.), pp 333–357, Report Number 13. Swedish University of Agricultural Science, Upsala, Sweden

    Google Scholar 

  • Solomon AM, Webb T III. (1985) Computer-aided reconstruction of late-quaternary landscape dynamics. Ann Rev Ecol Syst 16: 63–84

    Article  Google Scholar 

  • Solomon AM, Tharp ML, West DC, Taylor GE, Webb JM, Trimble JL (1984) Response of unmanaged forests to CO2-induced climate change: Available information, initial tests and data requirements. Tech Report TR009., U.S. DOE Carbon Dioxide Research Division, Washington D.C.

    Google Scholar 

  • Solomon AM (1986) Transient responses of forests to CO2-induced climate change: Simulation modeling experiments in eastern North America. Oecologia 68: 567–569

    Article  Google Scholar 

  • Thomthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev 21: 633–655

    Article  Google Scholar 

  • Thornthwaite CW (1933) The climates of the earth. Geogr Rev 23: 433–440

    Article  Google Scholar 

  • Thomthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38: 55–89

    Article  Google Scholar 

  • Troll C, Paffen KH (1964) Karte der Jahreszeitenklimate der Erde. Erkund Arch Wiss Geogr 18: 5–28

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of the Environment 8: 127–150

    Article  Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land cover classification using satellite data. Science 227: 369–374

    Article  Google Scholar 

  • Urban DL, Shugart HH (1989) Forest response to climate change: A simulation study for Southeastern forests. (pg. 3–1 to 3–45). In: The Potential Effects of Global Climate Change on the United States (J Smith and D Tirpak, eds.), EPA–230–05–89–054, US Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution. Cambridge: Cambridge Univ. Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Smith, T.M., Smith, J.B., Shugart, H.H. (1992). Modeling the Response of Terrestrial Vegetation to Climate Change in the Tropics. In: Goldammer, J.G. (eds) Tropical Forests in Transition. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7256-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7256-0_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7258-4

  • Online ISBN: 978-3-0348-7256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics