Skip to main content

The Operator Fejér-Riesz Theorem

  • Chapter
A Glimpse at Hilbert Space Operators

Abstract

The Fejér-Riesz theorem has inspired numerous generalizations in one and several variables, and for matrix- and operator-valued functions. This paper is a survey of some old and recent topics that center around Rosenblum’s operator generalization of the classical Fejér-Riesz theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.Z. Arov, Stable dissipative linear stationary dynamical scattering systems, J. Operator Theory 2 (1979), no. 1, 95–126, English Transl, with appendices by the author and J. Rovnyak, Oper. Theory Adv. Appl., vol. 134, Birkhäuser Verlag, Basel, 2002, 99–136.

    MATH  MathSciNet  Google Scholar 

  2. M. Bakonyi and T. Constantinescu, Schur’s algorithm and several applications, Pitman Research Notes in Mathematics Series, vol. 261, Longman Scientific & Technical, Harlow, 1992.

    Google Scholar 

  3. M. Bakonyi and H.J. Woerdeman, Matrix completions, moments, and sums of Hermitian squares, book manuscript, in preparation, 2008.

    Google Scholar 

  4. S. Barclay, A solution to the Douglas-Rudin problem for matrix-valued functions, Proc. London Math. Soc. (3), 99 (2009), no. 3, 757–786.

    Google Scholar 

  5. [5]S. Barclay, Continuity of the spectral factorization mapping, J. London Math. Soc. (2) 70 (2004), no. 3, 763–779.

    Google Scholar 

  6. [6] S. Barclay, Banach spaces of analytic vector-valued functions, Ph.D. thesis, University of Leeds, 2007.

    Google Scholar 

  7. H. Bart, I. Gohberg, M.A. Kaashoek, and A.C.M. Ran, Factorization of matrix and operator functions: the state space method, Oper. Theory Adv. Appl., vol. 178, Birkhäuser Verlag, Basel, 2008.

    Google Scholar 

  8. G. Blower, On analytic factorization of positive Hermitian matrix functions over the bidisc, Linear Algebra Appl. 295 (1999), no. 1-3, 149–158.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bourgain, A problem of Douglas and Rudin on factorization, Pacific J. Math. 121 (1986), no. 1, 47–50.

    MATH  MathSciNet  Google Scholar 

  10. L. de Branges, The expansion theorem for Hilbert spaces of entire functions, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), Amer. Math. Soc, Providence, RI, 1968, pp. 79–148.

    Google Scholar 

  11. A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89–102.

    Google Scholar 

  12. G. Cassier, Problème des moments sur un compact de Rn et décomposition de polynômes à plusieurs variables, J. Funct. Anal. 58 (1984), no. 3, 254–266.

    Article  MATH  MathSciNet  Google Scholar 

  13. K.F. Clancey and I. Gohberg, Factorization of matrix functions and singular integral operators, Oper. Theory Adv. Appl., vol. 3, Birkhäuser Verlag, Basel, 1981.

    Google Scholar 

  14. T. Constantinescu, Factorization of positive-definite kernels, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser Verlag, Basel, 1990, pp. 245–260.

    Google Scholar 

  15. A. Devinatz, The factorization of operator-valued functions, Ann. of Math. (2) 73 (1961), 458–495.

    Google Scholar 

  16. R.G. Douglas, On factoring positive operator functions, J. Math. Mech. 16 (1966), 119–126.

    MATH  MathSciNet  Google Scholar 

  17. R.G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math. 31 (1969), 313–320.

    MATH  MathSciNet  Google Scholar 

  18. M.A. Dritschel, On factorization of trigonometric polynomials, Integral Equations Operator Theory 49 (2004), no. 1, 11–42.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.A. Dritschel and H.J. Woerdeman, Outer factorizations in one and several variables, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4661–4679.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.L. Duren, Theory of H v spaces, Academic Press, New York, 1970; Dover reprint, Mineóla, New York, 2000.

    MATH  Google Scholar 

  21. R.E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965; Dover reprint, Mineóla, New York, 1995.

    MATH  Google Scholar 

  22. L. Fejér, Über trigonometrische Polynome, J. Reine Angew. Math. 146 (1916), 53–82.

    Article  Google Scholar 

  23. J.S. Gerónimo and Ming-Jun Lai, Factorization of multivariate positive Laurent polynomials, J. Approx. Theory 139 (2006), no. 1–2, 327–345.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.S. Geronimo and H.J. Woerdeman, Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables, Ann. of Math. (2) 160 (2004), no. 3, 839–906.

    Google Scholar 

  25. [25]H.J. Woerdeman, The operator-valued autoregressive filter problem and the suboptimal Nehari problem in two variables, Integral Equations Operator Theory 53 (2005), no. 3, 343–361.

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Gohberg, The factorization problem for operator functions, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1055–1082, Amer. Math. Soc. Transl. (2) 49 130–161.

    MATH  MathSciNet  Google Scholar 

  27. I. Gohberg, S. Goldberg, and M.A. Kaashoek, Classes of linear operators. Vol. I, Oper. Theory Adv. Appl., vol. 49, Birkhäuser Verlag, Basel, 1990.

    Google Scholar 

  28. U. Grenander and G. Szegő, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.

    Google Scholar 

  29. P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.

    MATH  Google Scholar 

  31. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165–202.

    Article  MATH  MathSciNet  Google Scholar 

  32. [32]D. Lowdenslager, Prediction theory and Fourier series in several variables. II, Acta Math. 106 (1961), 175–213.

    Article  MATH  MathSciNet  Google Scholar 

  33. J.W. Helton, S.A. McCullough, and M. Putinar, Matrix representations for positive noncommutative polynomials, Positivity 10 (2006), no. 1, 145–163.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.W. Helton and M. Putinar, Positive polynomials in scalar and matrix variables, the spectral theorem, and optimization, Operator theory, structured matrices, and dilations, Theta Ser. Adv. Math., vol. 7, Theta, Bucharest, 2007, pp. 229–306.

    Google Scholar 

  35. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Inc., Englewood Cliffs, N. J., 1962; Dover reprint, Mineóla, New York, 1988.

    MATH  Google Scholar 

  36. R.B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York, 1975.

    Google Scholar 

  37. B. Jacob and J.R. Partington, On the boundedness and continuity of the spectral factorization mapping, SIAM J. Control Optim. 40 (2001), no. 1, 88–106.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Kailath, A.H. Sayed, and B. Hassibi, Linear estimation, Prentice Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  39. A. Lebow and M. Schreiber, Polynomials over groups and a theorem of Fejér and Riesz, Acta Sci. Math. (Szeged) 44 (1982), no. 3–4, 335–344 (1983).

    MATH  MathSciNet  Google Scholar 

  40. D. Lowdenslager, On factoring matrix-valued functions, Ann. of Math. (2) 78 (1963), 450–454.

    Google Scholar 

  41. A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, vol. 71, Amer. Math. Soc., Providence, RI, 1988.

    Google Scholar 

  42. S. McCullough, Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl. 326 (2001), no. 1–3, 193–203.

    Article  MATH  MathSciNet  Google Scholar 

  43. G.J. Murphy, C*-algebras and operator theory, Academic Press Inc., Boston, MA, 1990.

    Google Scholar 

  44. A. Naftalevich and M. Schreiber, Trigonometric polynomials and sums of squares, Number theory (New York, 1983-84), Lecture Notes in Math., vol. 1135, Springer-Verlag, Berlin, 1985, pp. 225–238.

    Chapter  Google Scholar 

  45. T.W. Palmer, Banach algebras and the general theory of *-algebras. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  46. [46]T.W. Palmer, Banach algebras and the general theory of *-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  47. F. Riesz, Über ein Problem des Herrn Carathéodory, J. Reine Angew. Math. 146 (1916), 83–87.

    Article  Google Scholar 

  48. M. Rosenblatt, A multi-dimensional prediction problem, Ark. Mat. 3 (1958), 407–424.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl. 23 (1968), 139–147.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford University Press, New York, 1985; Dover reprint, Mineóla, New York, 1997.

    MATH  Google Scholar 

  51. [51]J. Rovnyak, The factorization problem for nonnegative operator-valued functions, Bull. Amer. Math. Soc. 77 (1971), 287–318.

    Article  MATH  MathSciNet  Google Scholar 

  52. Yu.A. Rozanov, Stationary random processes, Holden-Day Inc., San Francisco, Calif., 1967.

    MATH  Google Scholar 

  53. W. Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7 (1963), 532–539.

    MATH  MathSciNet  Google Scholar 

  54. L.A. Sakhnovich, Interpolation theory and its applications, Kluwer, Dordrecht, 1997.

    MATH  Google Scholar 

  55. D. Sarason, Generalized interpolation in H , Trans. Amer. Math. Soc. 127 (1967), 179–203.

    MATH  MathSciNet  Google Scholar 

  56. A.H. Sayed and T. Kailath, A survey of spectral factorization methods, Numer. Linear Algebra Appl. 8 (2001), no. 6–7, 467–496, Numerical linear algebra techniques for control and signal processing.

    Article  MATH  MathSciNet  Google Scholar 

  57. C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069.

    Article  MATH  MathSciNet  Google Scholar 

  58. K. Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206.

    Article  MATH  MathSciNet  Google Scholar 

  59. [59]K. Schmüdgen, Noncommutative real algebraic geometry — some basic concepts and first ideas, Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications, vol. 149, Springer-Verlag, Berlin, 2009, pp. 325–350.

    Google Scholar 

  60. B. Simon, Orthogonal polynomials on the unit circle. Part 1, Amer. Math. Soc. Colloq. Publ., vol. 54, Amer. Math. Soc, Providence, RI, 2005.

    Google Scholar 

  61. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam, 1970.

    Google Scholar 

  62. G. Szegő, Orthogonal polynomials, fourth ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc, Providence, RI, 1975.

    Google Scholar 

  63. N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. I. The regularity condition, Acta Math. 98 (1957), 111–150.

    Article  MATH  MathSciNet  Google Scholar 

  64. [64]P. Masani, The prediction theory of multivariate stochastic processes. II. The linear predictor, Acta Math. 99 (1958), 93–137.

    Article  MathSciNet  Google Scholar 

  65. V. Zasuhin, On the theory of multidimensional stationary random processes, C. R. (Doklady) Acad. Sci. URSS (N.S.) 33 (1941), 435–437.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To the memory of Paul Richard Halmos

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Dritschel, M.A., Rovnyak, J. (2010). The Operator Fejér-Riesz Theorem. In: Axler, S., Rosenthal, P., Sarason, D. (eds) A Glimpse at Hilbert Space Operators. Operator Theory Advances and Applications, vol 207. Springer, Basel. https://doi.org/10.1007/978-3-0346-0347-8_14

Download citation

Publish with us

Policies and ethics