Skip to main content

Partition Functions of the Ising Model on Some Self-similar Schreier Graphs

  • Conference paper
  • First Online:
Random Walks, Boundaries and Spectra

Part of the book series: Progress in Probability ((PRPR,volume 64))

Abstract

We study partition functions and thermodynamic limits for the Ising model on three families of finite graphs converging to infinite self-similar graphs. They are provided by three well-known groups realized as automorphism groups of regular rooted trees: the first Grigorchuk’s group of intermediate growth; the iterated monodromy group of the complex polynomial z 2-1 known as the “Basilica group”; and the Hanoi Towers group H (3) closely related to the Sierpinski gasket.

Mathematics Subject Classification (2000). Primary 82B20; Secondary 05A15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bartholdi and R.I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 5–45; translation in Proc. Steklov Inst. Math. 2000, no. 4 (231), 1–41.

    Google Scholar 

  2. I. Bondarenko, Groups generated by bounded automata and their Schreier graphs, PhD Thesis Texas A&M, 2007, available at http://txspace.tamu.edu/bitstream/ handle/1969.1/85845/Bondarenko.pdf?sequence=1

  3. R. Burioni, D. Cassi and L. Donetti, Lee-Yang zeros and the Ising model on the Sierpi´nski Gasket, J. Phys. A: Math. Gen., 32 (1999), 5017–5027.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. D’Angeli, A. Donno and T. Nagnibeda, The dimer model on some families of self-similar graphs, preprint.

    Google Scholar 

  5. D. D’Angeli, A. Donno, M. Matter and T. Nagnibeda, Schreier graphs of the Basilica group, Journal of Modern Dynamics, 4 (2010), no. 1, 167–205.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys., 7 (1966), no. 10, 1776–1781.

    Article  Google Scholar 

  7. Y. Gefen, A. Aharony, Y. Shapir and B. Mandelbrot, Phase transitions on fractals. II. Sierpi´nski gaskets, J. Phys. A, 17 (1984), no. 2, 435–444.

    Google Scholar 

  8. R.I. Grigorchuk, Solved and unsolved problems around one group, in: “Infinite groups: geometric, combinatorial and dynamical aspects” (L. Bartholdi, T.

    Google Scholar 

  9. Ceccherini-Silberstein, T. Smirnova-Nagnibeda and A. ˙Zuk editors), Progr. Math., 248, Birkh¨auser, Basel, 2005, 117–218.

    Google Scholar 

  10. R.I. Grigorchuk and A.M. Stepin, Gibbs states on countable groups. Teor. Veroyatnost. i Primenen. 29 (1984), no. 2, 351–354.

    MathSciNet  MATH  Google Scholar 

  11. R.I. Grigorchuk and Z. ˇSuni´c, Self-similarity and branching in group theory, in: “Groups St. Andrews 2005, I”, London Math. Soc. Lecture Note Ser., 339, Cambridge Univ. Press, Cambridge, 2007, 36–95.

    Google Scholar 

  12. R.I. Grigorchuk and A. Z˙ uk, On a torsion-free weakly branch group defined by a three-state automaton, International J. Algebra Comput., 12 (2002), no. 1, 223–246.

    Google Scholar 

  13. M. Gromov, Structures m´etriques pour les vari´et´es riemanniennes, Edited by J. Lafontaine and P. Pansu, Textes Math´ematiques, 1. CEDIC, Paris, 1981.

    Google Scholar 

  14. E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeit. f¨ur Physik, 31 (1925), 253–258.

    Google Scholar 

  15. W. Lenz, Beitr¨age zum Verst¨andnis der magnetischen Eigenschaften in festen K¨orpern, Physikalische Zeitschrift, 21 (1920), 613–615.

    Google Scholar 

  16. F. Lund, M. Rasetti and T. Regge, Dimer and Ising models on the Lobachevsky plane, Theor. Math. Phys. 33 (1977), 1000–1015.

    Article  Google Scholar 

  17. M. Matter and T. Nagnibeda, Self-similar groups and Abelian sandpile model on random rooted graphs, preprint (2010).

    Google Scholar 

  18. V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005.

    Google Scholar 

  19. L. Rogers and A. Teplyaev, Laplacians on the basilica Julia set, to appear in Commun. Pure Appl. Anal., 9 (2010), no. 1, 211–231.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Series and Ya. Sinai, Ising models on the Lobachevsky plane, Commun. Math. Phys. 128 (1990), 63–76.

    Google Scholar 

  21. E. Teufl and S. Wagner, Enumeration of matchings in families of self-similar graphs, Discrete Applied Mathematics, 158 (2010), no. 14, 1524–1535.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele D’Angeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

D’Angeli, D., Donno, A., Nagnibeda, T. (2011). Partition Functions of the Ising Model on Some Self-similar Schreier Graphs. In: Lenz, D., Sobieczky, F., Woess, W. (eds) Random Walks, Boundaries and Spectra. Progress in Probability, vol 64. Springer, Basel. https://doi.org/10.1007/978-3-0346-0244-0_15

Download citation

Publish with us

Policies and ethics