Skip to main content

Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease

  • Chapter
  • First Online:
Helicobacter pylori and Gastric Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 444))

Abstract

Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abfalter CM, Schubert M, Götz C, Schmidt TP, Posselt G, Wessler S (2016) HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens. Cell Commun Signal 14 (1):30. https://doi.org/10.1186/s12964-016-0153-y

  • Albrecht N, Tegtmeyer N, Sticht H, Skórko-Glonek J, Backert S (2018) Amino-terminal processing of Helicobacter pylori serine protease HtrA: role in oligomerization and activity regulation. Front Microbiol 9:642. https://doi.org/10.3389/fmicb.2018.00642

  • Allan E, Mullany P, Tabaqchali S (1998) Construction and characterization of a Helicobacter pylori clpB mutant and role of the gene in the stress response. J Bacteriol 180(2):426–429. https://doi.org/10.1128/jb.180.2.426-429.1998

  • Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300(5624):1430–1434. https://doi.org/10.1126/science.1081919

  • An DR, Kim HS, Kim J, Im HN, Yoon HJ, Yoon JY, Jang JY, Hesek D, Lee M, Mobashery S, Kim SJ, Lee BI, Suh SW (2015) Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase. Acta Crystallogr D Biol Crystallogr 71(Pt 3):675–686. https://doi.org/10.1107/s1399004715000152

  • Backert S, Schmidt TP, Harrer A, Wessler S (2017) Exploiting the gastric epithelial barrier: Helicobacter pylori's attack on tight and adherens junctions. Curr Top Microbiol Immunol 400:195–226. https://doi.org/10.1007/978-3-319-50520-6_9

  • Bernegger S, Brunner C, VizoviÅ¡ek M, Fonovic M, Cuciniello G, Giordano F, Stanojlovic V, Jarzab M, Simister P, Feller SM, Obermeyer G, Posselt G, Turk B, Cabrele C, Schneider G, Wessler S (2020) A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Sci Rep 10(1):10563. https://doi.org/10.1038/s41598-020-67578-2

  • Bernegger S, Hutterer E, Zarzecka U, Schmidt TP, Huemer M, Widlroither I, Posselt G, Skorko-Glonek J, Wessler S (2022a) E-cadherin orthologues as substrates for the serine protease high temperature requirement A (HtrA). Biomolecules 12(3). https://doi.org/10.3390/biom12030356

  • Bernegger S, Jarzab M, Wessler S, Posselt G (2022b) Proteolytic landscapes in gastric pathology and cancerogenesis. Int J Mol Sci 23(5). https://doi.org/10.3390/ijms23052419

  • Bernegger S, Vidmar R, Fonovic M, Posselt G, Turk B, Wessler S (2021) Identification of desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun Signal 19(1):108. https://doi.org/10.1186/s12964-021-00788-x

  • Blaser N, Backert S, Pachathundikandi SK (2019) Immune cell signaling by Helicobacter pylori: impact on gastric pathology. Adv Exp Med Biol 1149:77–106. https://doi.org/10.1007/5584_2019_360

    Article  CAS  PubMed  Google Scholar 

  • Bonis M, Ecobichon C, Guadagnini S, Prévost MC, Boneca IG (2010) A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol Microbiol 78(4):809–819. https://doi.org/10.1111/j.1365-2958.2010.07383.x

  • Bumann D, Aksu S, Wendland M, Janek K, Zimny-Arndt U, Sabarth N, Meyer TF, Jungblut PR (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70(7):3396–3403. https://doi.org/10.1128/iai.70.7.3396-3403.2002

  • Caron TJ, Scott KE, Fox JG, Hagen SJ (2015) Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 21(40):11411–11427. https://doi.org/10.3748/wjg.v21.i40.11411

  • Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93(25):14648–14653. https://doi.org/10.1073/pnas.93.25.14648

  • Choi HP, Juarez S, Ciordia S, Fernandez M, Bargiela R, Albar JP, Mazumdar V, Anton BP, Kasif S, Ferrer M, Steffen M (2013) Biochemical characterization of hypothetical proteins from Helicobacter pylori. PLoS One 8(6):e66605. https://doi.org/10.1371/journal.pone.0066605

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85. https://doi.org/10.1016/j.addr.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  • Correa P (2013) Gastric cancer: overview. Gastroenterol Clin North Am 42(2):211–217. https://doi.org/10.1016/j.gtc.2013.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • de Martel C, Georges D, Bray F, Ferlay J, Clifford GM (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 8(2):e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7

    Article  PubMed  Google Scholar 

  • Engler DB, Leonardi I, Hartung ML, Kyburz A, Spath S, Becher B, Rogler G, Müller A (2015) Helicobacter pylori-specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and IL-18. Inflamm Bowel Dis 21(4):854–861. https://doi.org/10.1097/mib.0000000000000318

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–386. https://doi.org/10.1002/ijc.29210

  • Firczuk M, Mucha A, Bochtler M (2005) Crystal structures of active LytM. J Mol Biol 354(3):578–590. https://doi.org/10.1016/j.jmb.2005.09.082

  • Fischer W, Tegtmeyer N, Stingl K, Backert S (2020) Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function. Front Microbiol 11:1592. https://doi.org/10.3389/fmicb.2020.01592

  • Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castañeda-Orjuela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew S, das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, TT GH, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Søreide K, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, Uzochukwu BSC, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJL, Naghavi M (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3(4):524–548. https://doi.org/10.1001/jamaoncol.2016.5688

  • Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL (2016) An overview of Helicobacter pylori VacA toxin biology. Toxins (Basel) 8(6). https://doi.org/10.3390/toxins8060173

  • Garcia MA, Nelson WJ, Chavez N (2018) Cell-cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 10(4). https://doi.org/10.1101/cshperspect.a029181

  • Gharibi S, Falsafi T, Alebouyeh M, Farzi N, Vaziri F, Zali MR (2017) Relationship between histopathological status of the Helicobacter pylori infected patients and proteases of H. pylori in isolates carrying diverse virulence genotypes. Microb Pathog 110:100–106. https://doi.org/10.1016/j.micpath.2017.06.023

  • Gobert AP, Wilson KT (2022) Induction and regulation of the innate immune response in Helicobacter pylori Infection. Cell Mol Gastroenterol Hepatol 13(5):1347–1363. https://doi.org/10.1016/j.jcmgh.2022.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrer A, Bücker R, Boehm M, Zarzecka U, Tegtmeyer N, Sticht H, Schulzke JD, Backert S (2019) Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathog 11:4. https://doi.org/10.1186/s13099-019-0283-z

  • Harris TJC, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514. https://doi.org/10.1038/nrm2927

  • Hoy B, Brandstetter H, Wessler S (2013) The stability and activity of recombinant Helicobacter pylori HtrA under stress conditions. J Basic Microbiol 53(5):402–409. https://doi.org/10.1002/jobm.201200074

  • Hoy B, Löwer M, Weydig C, Carra G, Tegtmeyer N, Geppert T, Schröder P, Sewald N, Backert S, Schneider G, Wessler S (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11(10):798–804. https://doi.org/10.1038/embor.2010.114

  • Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W, Melchers K, Haas R (2003) Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med 197(7):813–822. https://doi.org/10.1084/jem.20021531

  • Kim DY, Kim KK (2008) The structural basis for the activation and peptide recognition of bacterial ClpP. J Mol Biol 379(4):760–771. https://doi.org/10.1016/j.jmb.2008.04.036

  • Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416(6879):455–459. https://doi.org/10.1038/416455a

  • Krueger S, Hundertmark T, Kuester D, Kalinski T, Peitz U, Roessner A (2007) Helicobacter pylori alters the distribution of ZO-1 and p120ctn in primary human gastric epithelial cells. Pathol Res Pract 203(6):433–444. https://doi.org/10.1016/j.prp.2007.04.003

  • Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164):862–866. https://doi.org/10.1038/nature06187

  • Liu W, Tian J, Hui W, Kong W, Feng Y, Si J, Gao F (2021) A retrospective study assessing the acceleration effect of type I Helicobacter pylori infection on the progress of atrophic gastritis. Sci Rep 11(1):4143. https://doi.org/10.1038/s41598-021-83647-6

  • Loughlin MF, Arandhara V, Okolie C, Aldsworth TG, Jenks PJ (2009) Helicobacter pylori mutants defective in the clpP ATP-dependant protease and the chaperone clpA display reduced macrophage and murine survival. Microb Pathog 46(1):53–57. https://doi.org/10.1016/j.micpath.2008.10.004

  • Löwer M, Weydig C, Metzler D, Reuter A, Starzinski-Powitz A, Wessler S, Schneider G (2008) Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS One 3(10):e3510. https://doi.org/10.1371/journal.pone.0003510

  • Lu HS, Saito Y, Umeda M, Murata-Kamiya N, Zhang HM, Higashi H, Hatakeyama M (2008) Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci 99(10):2004–2011. https://doi.org/10.1111/j.1349-7006.2008.00950.x

  • Luo B, Wang M, Hou N, Hu X, Jia G, Qin X, Zuo X, Liu Y, Luo K, Song W, Wang K, Pang M (2016) ATP-dependent lon protease contributes to Helicobacter pylori-induced gastric carcinogenesis. Neoplasia 18(4):242–252. https://doi.org/10.1016/j.neo.2016.03.001

  • Lytton SD, Fischer W, Nagel W, Haas R, Beck FX (2005) Production of ammonium by Helicobacter pylori mediates occludin processing and disruption of tight junctions in Caco-2 cells. Microbiology (Reading) 151(Pt 10):3267–3276. https://doi.org/10.1099/mic.0.28049-0

  • Marques MS, Costa AC, Osório H, Pinto ML, Relvas S, Dinis-Ribeiro M, Carneiro F, Leite M, Figueiredo C (2021) Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity. Gut Microbes 13(1):1–21. https://doi.org/10.1080/19490976.2021.1921928

  • Martin-Belmonte F, Perez-Moreno M (2011) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12(1):23–38. https://doi.org/10.1038/nrc3169

  • Monaco A, Ovryn B, Axis J, Amsler K (2021) The epithelial cell leak pathway. Int J Mol Sci 22(14):7677. https://doi.org/10.3390/ijms22147677

  • Müller L, Hatzfeld M, Keil R (2021) Desmosomes as signaling hubs in the regulation of cell behavior. Front Cell Dev Biol 9:745670. https://doi.org/10.3389/fcell.2021.745670

  • Na TY, Schecterson L, Mendonsa AM, Gumbiner BM (2020) The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A 117(11):5931–5937. https://doi.org/10.1073/pnas.1918167117

  • Navabi N, Johansson ME, Raghavan S, Lindén SK (2013) Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa. Infect Immun 81(3):829–837. https://doi.org/10.1128/iai.01000-12

  • Necchi V, Candusso ME, Tava F, Luinetti O, Ventura U, Fiocca R, Ricci V, Solcia E (2007) Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 132(3):1009–1023. https://doi.org/10.1053/j.gastro.2007.01.049

  • Necchi V, Ricci V, Sommi P, Solcia E (2019) CagA effector protein in Helicobacter pylori-infected human gastric epithelium in vivo: from bacterial core and adhesion/injection clusters to host cell proteasome-rich cytosol. Toxins (Basel) 11(11). https://doi.org/10.3390/toxins11110618

  • Oertli M, Müller A (2012) Helicobacter pylori targets dendritic cells to induce immune tolerance, promote persistence and confer protection against allergic asthma. Gut Microbes 3(6):566–571. https://doi.org/10.4161/gmic.21750

  • Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, Yamada G, Azuma T, Hatakeyama M (2008) Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A 105(3):1003–1008. https://doi.org/10.1073/pnas.0711183105

  • Otani T, Furuse M (2020) Tight junction structure and function revisited. Trends Cell Biol 30(10):805–817. https://doi.org/10.1016/j.tcb.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  • Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M (2019) Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol 218(10):3372–3396. https://doi.org/10.1083/jcb.201812157

  • Pachathundikandi SK, Lind J, Tegtmeyer N, El-Omar EM, Backert S (2015). 'Interplay of the gastric pathogen helicobacter pylori with toll-like receptor'. Biomed Res Int 2015:192420. https://doi.org/10.1155/2015/192420

  • Papini E, Satin B, Norais N, de Bernard M, Telford JL, Rappuoli R, Montecucco C (1998) Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 102(4):813–820. https://doi.org/10.1172/jci2764

  • Perna AM, Reisen F, Schmidt TP, Geppert T, Pillong M, Weisel M, Hoy B, Simister PC, Feller SM, Wessler S, Schneider G (2014) Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Chem Sci 5:3583–3590. https://doi.org/10.1039/c4sc01443j

  • Piotrowski J, Slomiany A, Slomiany BL (1997) Suppression of Helicobacter pylori protease activity towards growth factors by sulglycotide. J Physiol Pharmacol 48(3):345–351

    CAS  PubMed  Google Scholar 

  • Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77. https://doi.org/10.1186/1478-811x-11-77

  • Rath P, Singh PK, Batra JK (2012) Functional and structural characterization of Helicobacter pylori ClpX: a molecular chaperone of Hsp100 family. Protein Pept Lett 19(12):1263–1271. https://doi.org/10.2174/092986612803521701

  • Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624-d632. https://doi.org/10.1093/nar/gkx1134

  • Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242. https://doi.org/10.1038/nrm3775

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826):491–497. https://doi.org/10.1126/science.2821619

  • Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–7935. https://doi.org/10.1128/jb.186.23.7926-7935.2004

  • Sato M, Miura K, Kageyama C, Sakae H, Obayashi Y, Kawahara Y, Matsushita O, Yokota K, Okada H (2019) Association of host immunity with Helicobacter pylori infection in recurrent gastric cancer. Infectious Agents and Cancer 14(1):4. https://doi.org/10.1186/s13027-019-0221-1

  • Schirrmeister W, Gnad T, Wex T, Higashiyama S, Wolke C, Naumann M, Lendeckel U (2009) Ectodomain shedding of E-cadherin and c-Met is induced by Helicobacter pylori infection. Exp Cell Res 315(20):3500–3508. https://doi.org/10.1016/j.yexcr.2009.07.029

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 61:1–241

    Google Scholar 

  • Schmidt TP, Goetz C, Huemer M, Schneider G, Wessler S (2016a) Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. Gut Pathog 8:29. https://doi.org/10.1186/s13099-016-0112-6

  • Schmidt TP, Perna AM, Fugmann T, Böhm M, Jan H, Haller S, Götz C, Tegtmeyer N, Hoy B, Rau TT, Neri D, Backert S, Schneider G, Wessler S (2016b) Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Sci Rep 6:23264. https://doi.org/10.1038/srep23264

  • Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay AC-Y, Lamichane B, Tuan VP, Fauzia KA, Sticht H, Yamaoka Y, Marshall BJ, Backert S (2023) A single nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 31:1–14. https://doi.org/10.1016/j.chom.2023.06.016

    Article  CAS  Google Scholar 

  • Sharafutdinov I, Esmaeili DS, Harrer A, Tegtmeyer N, Sticht H, Backert S (2020) Campylobacter jejuni serine protease HtrA cleaves the tight junction component claudin-8. Front Cell Infect Microbiol 10:590186. https://doi.org/10.3389/fcimb.2020.590186

  • Smith AW, Chahal B, French GL (1994) The human gastric pathogen Helicobacter pylori has a gene encoding an enzyme first classified as a mucinase in Vibrio cholerae. Mol Microbiol 13(1):153–160. https://doi.org/10.1111/j.1365-2958.1994.tb00410.x

  • Smith TG, Lim JM, Weinberg MV, Wells L, Hoover TR (2007) Direct analysis of the extracellular proteome from two strains of Helicobacter pylori. Proteomics 7(13):2240–2245. https://doi.org/10.1002/pmic.200600875

  • Snider CA, Voss BJ, McDonald WH, Cover TL (2015) Supporting data for analysis of the Helicobacter pylori exoproteome. Data Brief 5:560–563. https://doi.org/10.1016/j.dib.2015.10.008

  • Sokolova O, Naumann M (2022) Matrix metalloproteinases in Helicobacter pylori-associated gastritis and gastric cancer. Int J Mol Sci 23(3). https://doi.org/10.3390/ijms23031883

  • Suerbaum S, Friedrich S (1996) Helicobacter pylori does not have a hap mucinase gene that is quasi-identical to the Vibrio cholerae hap gene. Mol Microbiol 20(5):1113–1114. https://doi.org/10.1111/j.1365-2958.1996.tb02551.x

  • Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR (2010) Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141(5):822–833. https://doi.org/10.1016/j.cell.2010.03.046

  • Takahashi-Kanemitsu A, Knight CT, Hatakeyama M (2020) Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cellular Mol Immunol 17(1):50–63. https://doi.org/10.1038/s41423-019-0339-5

  • Tegtmeyer N, Moodley Y, Yamaoka Y, Pernitzsch SR, Schmidt V, Traverso FR, Schmidt TP, Rad R, Yeoh KG, Bow H, Torres J, Gerhard M, Schneider G, Wessler S, Backert S (2016) Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. Mol Microbiol 99(5):925–944. https://doi.org/10.1111/mmi.13276

  • Tegtmeyer N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, Asche CI, Boehm M, Loessner H, Figueiredo C, Naumann M, Palmisano R, Solcia E, Ricci V, Backert S (2017) Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22(4):552–560.e555. https://doi.org/10.1016/j.chom.2017.09.005

  • Tombola F, Morbiato L, Del Giudice G, Rappuoli R, Zoratti M, Papini E (2001) The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J Clin Invest 108(6):929–937. https://doi.org/10.1172/jci13045

  • Tshibangu-Kabamba E, Yamaoka Y (2021) Helicobacter pylori infection and antibiotic resistance—from biology to clinical implications. Nat Rev Gastroenterol Hepatol 18(9):613–629. https://doi.org/10.1038/s41575-021-00449-x

  • Tu IF, Liao JH, Yang FL, Lin NT, Chan HL, Wu SH (2014) Lon protease affects the RdxA nitroreductase activity and metronidazole susceptibility in Helicobacter pylori. Helicobacter 19(5):356–366. https://doi.org/10.1111/hel.12140

  • Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P (2022) Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 86(Pt 2):1138–1154. https://doi.org/10.1016/j.semcancer.2021.08.007

  • Wadström T, Hirmo S, Nilsson B (1997) Biochemical aspects of H. pylori adhesion. J Physiol Pharmacol 48(3):325–331

    Google Scholar 

  • Weydig C, Starzinski-Powitz A, Carra G, Löwer J, Wessler S (2007) CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity. Exp Cell Res 313(16):3459–3471. https://doi.org/10.1016/j.yexcr.2007.07.015

  • Yamaoka Y, Kato M, Asaka M (2008) Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med 47(12):1077–1083. https://doi.org/10.2169/internalmedicine.47.0975

  • Zarzecka U, Harrer A, Zawilak-Pawlik A, Skorko-Glonek J, Backert S (2019) Chaperone activity of serine protease HtrA of Helicobacter pylori as a crucial survival factor under stress conditions. Cell Commun Signal 17(1):161. https://doi.org/10.1186/s12964-019-0481-9

  • Zarzecka U, Matkowska D, Backert S, Skorko-Glonek J (2021) Importance of two PDZ domains for the proteolytic and chaperone activities of Helicobacter pylori serine protease HtrA. Cell Microbiol 23(4):e13299. https://doi.org/10.1111/cmi.13299

  • Zarzecka U, Tegtmeyer N, Sticht H, Backert S (2023) Trimer stability of Helicobacter pylori HtrA is regulated by a natural mutation in the protease domain. Med Microbiol Immunol. https://doi.org/10.1007/s00430-023-00766-9

  • Zawilak-Pawlik A, Zarzecka U, Å»yÅ‚a-Uklejewicz D, Lach J, Strapagiel D, Tegtmeyer N, Böhm M, Backert S, Skorko-Glonek J (2019) Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations. Sci Rep 9(1):11794. https://doi.org/10.1038/s41598-019-48030-6

  • Zhang Z, Huang Q, Tao X, Song G, Zheng P, Li H, Sun H, Xia W (2019) The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. J Biol Chem 294(20):7990–8000. https://doi.org/10.1074/jbc.RA119.007387

Download references

Acknowledgements

The work of SW was supported by the grant I_4360 and P_31507 from the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silja Wessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wessler, S., Posselt, G. (2023). Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. In: Backert, S. (eds) Helicobacter pylori and Gastric Cancer. Current Topics in Microbiology and Immunology, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-031-47331-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47331-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47330-2

  • Online ISBN: 978-3-031-47331-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics