Skip to main content

Explaining Search Result Stances to Opinionated People

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

People use web search engines to find information before forming opinions, which can lead to practical decisions with different levels of impact. The cognitive effort of search can leave opinionated users vulnerable to cognitive biases, e.g., the confirmation bias. In this paper, we investigate whether stance labels and their explanations can help users consume more diverse search results. We automatically classify and label search results on three topics (i.e., intellectual property rights, school uniforms, and atheism) as against, neutral, and in favor, and generate explanations for these labels. In a user study (N=203), we then investigate whether search result stance bias (balanced vs biased) and the level of explanation (plain text, label only, label and explanation) influence the diversity of search results clicked. We find that stance labels and explanations lead to a more diverse search result consumption. However, we do not find evidence for systematic opinion change among users in this context. We believe these results can help designers of search engines to make more informed design decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The pre-registration is openly available at https://osf.io/3nxak.

  2. 2.

    The data set is available at https://osf.io/yghr2.

  3. 3.

    https://wandb.ai.

  4. 4.

    Due to a minor error in evaluation, a slightly higher macro F1 score was reported in the pre-registration. However, this erroneous score did not influence the training process or affect our user study.

  5. 5.

    https://github.com/marcotcr/lime.

  6. 6.

    We tried multiple kernel sizes (10, 25, 50, and 75) and chose a value of 50 since we got a slight increase in the R2 scores for each LIME local prediction on the test set of about 3–4% on average compared to the other sizes.

  7. 7.

    We chose this setup to make the conditions as comparable as possible, e.g., rather than displaying results in alternating fashion in the balanced condition.

  8. 8.

    https://www.qualtrics.com/.

  9. 9.

    Whenever a user enters a new query, the first SERP (i.e., displaying the top 10 results) will always show search results according to the template, whereas pages 2 and 3 will show the 21 search results relevant to the topic in random order.

  10. 10.

    https://prolific.co.

  11. 11.

    https://www.qualtrics.com/.

References

  1. Aldayel, A., Magdy, W.: Your stance is exposed! Analysing possible factors for stance detection on social media. In: Proceedings of the ACM on Human-Computer Interaction, vol. 3(CSCW), pp. 1–20 (2019)

    Google Scholar 

  2. Aldayel, A., Magdy, W.: Stance detection on social media: state of the art and trends. Inf. Process. Manage. 58(4), 102597 (2021). https://doi.org/10.1016/j.ipm.2021.102597

    Article  Google Scholar 

  3. Allam, A., Schulz, P.J., Nakamoto, K.: The impact of search engine selection and sorting criteria on vaccination beliefs and attitudes: two experiments manipulating Google output. J. Med. Internet Res. 16(4), e100 (2014). https://doi.org/10.2196/jmir.2642. http://www.jmir.org/2014/4/e100/

  4. Allaway, E., McKeown, K.: Zero-shot stance detection: a dataset and model using generalized topic representations. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8913–8931. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.717. https://aclanthology.org/2020.emnlp-main.717

  5. Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 876–885. Association for Computing Machinery, New York, NY, USA (2016)

    Google Scholar 

  6. Azzopardi, L.: Cognitive biases in search: a review and reflection of cognitive biases in information retrieval (2021)

    Google Scholar 

  7. Bail, C.A., et al.: Exposure to opposing views on social media can increase political polarization. Proc. Natl. Acad. Sci. 115(37), 9216–9221 (2018)

    Article  Google Scholar 

  8. Bink, M., Schwarz, S., Draws, T., Elsweiler, D.: Investigating the influence of featured snippets on user attitudes. In: ACM SIGIR Conference on Human Information Interaction and Retrieval. CHIIR 2023, ACM, New York, NY, USA (2023). https://doi.org/10.1145/3576840.3578323

  9. Bink, M., Zimmerman, S., Elsweiler, D.: Featured snippets and their influence on users’ credibility judgements. In: ACM SIGIR Conference on Human Information Interaction and Retrieval, pp. 113–122. ACM, Regensburg Germany (2022). https://doi.org/10.1145/3498366.3505766

  10. Chen, S., Xiao, L., Kumar, A.: Spread of misinformation on social media: what contributes to it and how to combat it. Comput. Hum. Behav. 141, 107643 (2023). https://doi.org/10.1016/j.chb.2022.107643

    Article  Google Scholar 

  11. Cushion, S., Thomas, R.: From quantitative precision to qualitative judgements: professional perspectives about the impartiality of television news during the 2015 UK general election. Journalism 20(3), 392–409 (2019)

    Article  Google Scholar 

  12. Draws, T., et al.: Explainable cross-topic stance detection for search results. In: CHIIR (2023)

    Google Scholar 

  13. Draws, T., et al.: Viewpoint diversity in search results. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13980, pp. 279–297. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28244-7_18

    Chapter  Google Scholar 

  14. Draws, T., Tintarev, N., Gadiraju, U., Bozzon, A., Timmermans, B.: This is not what we ordered: exploring why biased search result rankings affect user attitudes on debated topics. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 295–305. SIGIR 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462851. https://dl.acm.org/doi/10.1145/3404835.3462851

  15. Epstein, R., Robertson, R.E.: The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Natl. Acad. Sci. 112(33), E4512–E4521 (2015). https://doi.org/10.1073/pnas.1419828112. http://www.pnas.org/lookup/doi/10.1073/pnas.1419828112

  16. Faul, F., Erdfelder, E., Buchner, A., Lang, A.G.: Statistical power analyses using g* power 3.1: tests for correlation and regression analyses. Behav. Res. Meth. 41(4), 1149–1160 (2009)

    Google Scholar 

  17. Feldhus, N., Hennig, L., Nasert, M.D., Ebert, C., Schwarzenberg, R., Möller, S.: Constructing natural language explanations via saliency map verbalization. arXiv preprint arXiv:2210.07222 (2022)

  18. Gezici, G., Lipani, A., Saygin, Y., Yilmaz, E.: Evaluation metrics for measuring bias in search engine results. Inf. Retrieval J. 24(2), 85–113 (2021). https://doi.org/10.1007/s10791-020-09386-w

    Article  Google Scholar 

  19. Gohel, P., Singh, P., Mohanty, M.: Explainable AI: current status and future directions. arXiv preprint arXiv:2107.07045 (2021)

  20. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-detection task. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1859–1874. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1158

  21. Hardalov, M., Arora, A., Nakov, P., Augenstein, I.: Few-shot cross-lingual stance detection with sentiment-based pre-training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10729–10737. AAAI (2022)

    Google Scholar 

  22. Jin, W., Carpendale, S., Hamarneh, G., Gromala, D.: Bridging AI developers and end users: an end-user-centred explainable AI taxonomy and visual vocabularies. In: Proceedings of the IEEE Visualization, Vancouver, BC, Canada, pp. 20–25 (2019)

    Google Scholar 

  23. Kaiser, B., Wei, J., Lucherini, E., Lee, K., Matias, J.N., Mayer, J.: Adapting security warnings to counter online disinformation. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 1163–1180 (2021)

    Google Scholar 

  24. Küçük, D., Can, F.: Stance detection: a survey. ACM Comput. Surv. 53(1), 1–37 (2021). https://doi.org/10.1145/3369026

    Article  Google Scholar 

  25. Leonhardt, J., Rudra, K., Anand, A.: Extractive explanations for interpretable text ranking. ACM Trans. Inf. Syst. 41(4), 1–31 (2023). https://doi.org/10.1145/3576924

    Article  Google Scholar 

  26. Lyu, L., Anand, A.: Listwise explanations for ranking models using multiple explainers. In: Kamps, J., et al. (eds.) ECIR 2023. LNCS, vol. 13980, pp. 653–668. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-28244-7_41

    Chapter  Google Scholar 

  27. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  28. Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural NLP: a survey. ACM Comput. Surv. 55(8), 1–42 (2022)

    Article  Google Scholar 

  29. Mena, P.: Cleaning up social media: the effect of warning labels on likelihood of sharing false news on Facebook. Policy Internet 12, 165–183 (2020). https://doi.org/10.1002/poi3.214

    Article  Google Scholar 

  30. Munson, S.A., Resnick, P.: Presenting diverse political opinions: how and how much. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1457–1466 (2010)

    Google Scholar 

  31. Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998)

    Article  Google Scholar 

  32. Nyhan, B., Reifler, J.: When corrections fail: the persistence of political misperceptions. Polit. Behav. 32(2), 303–330 (2010)

    Article  Google Scholar 

  33. Pogacar, F.A., Ghenai, A., Smucker, M.D., Clarke, C.L.: The positive and negative influence of search results on people’s decisions about the efficacy of medical treatments. In: Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, pp. 209–216. ACM, Amsterdam The Netherlands (2017). https://doi.org/10.1145/3121050.3121074

  34. Puschmann, C.: Beyond the bubble: assessing the diversity of political search results. Digit. Journal. 7(6), 824–843 (2019). https://doi.org/10.1080/21670811.2018.1539626

    Article  Google Scholar 

  35. Putra, S.R., Moraes, F., Hauff, C.: SearchX: empowering collaborative search research. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1265–1268 (2018)

    Google Scholar 

  36. Reuver, M., Verberne, S., Morante, R., Fokkens, A.: Is stance detection topic-independent and cross-topic generalizable? - a reproduction study. In: Proceedings of the 8th Workshop on Argument Mining, pp. 46–56. Association for Computational Linguistics, Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.argmining-1.5

  37. Ribeiro, M.T., Singh, S., Guestrin, C.:“Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  38. Rieger, A., Draws, T., Tintarev, N., Theune, M.: This item might reinforce your opinion: obfuscation and labeling of search results to mitigate confirmation bias. In: Proceedings of the 32nd ACM Conference on Hypertext and Social Media, pp. 189–199. HT 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3465336.3475101

  39. Roy, A., Fafalios, P., Ekbal, A., Zhu, X., Dietze, S.: Exploiting stance hierarchies for cost-sensitive stance detection of web documents. J. Intell. Inf. Syst. 58(1), 1–19 (2022). https://doi.org/10.1007/s10844-021-00642-z

    Article  Google Scholar 

  40. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 (2019)

    Google Scholar 

  41. Sepúlveda-Torres, R., Vicente, M., Saquete, E., Lloret, E., Palomar, M.: Exploring summarization to enhance headline stance detection. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds.) NLDB 2021. LNCS, vol. 12801, pp. 243–254. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80599-9_22

    Chapter  Google Scholar 

  42. Silalahi, S., Ahmad, T., Studiawan, H.: Named entity recognition for drone forensic using BERT and distilBERT. In: 2022 International Conference on Data Science and Its Applications (ICoDSA), pp. 53–58. IEEE (2022)

    Google Scholar 

  43. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  44. Staliūnaitė, I., Iacobacci, I.: Compositional and lexical semantics in RoBERTa, BERT and distilBERT: a case study on COQA. arXiv preprint arXiv:2009.08257 (2020)

  45. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  46. Tong, J., Wang, Z., Rui, X: A multimodel-based deep learning framework for short text multiclass classification with the imbalanced and extremely small data set. Comput. Intell. Neurosci. 2022 (2022)

    Google Scholar 

  47. White, R.: Beliefs and biases in web search. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–12. ACM, Dublin Ireland (2013). https://doi.org/10.1145/2484028.2484053

  48. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.6

  49. Xu, C., Paris, C., Nepal, S., Sparks, R.: Cross-target stance classification with self-attention networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), pp. 778–783. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2123. https://aclanthology.org/P18-2123

  50. Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management, pp. 1–6. ACM, Chicago IL USA (2017). https://doi.org/10.1145/3085504.3085526

  51. Ying, X.: An overview of overfitting and its solutions. In: Journal of Physics: Conference Series, vol. 1168, p. 022022. IOP Publishing (2019)

    Google Scholar 

  52. Yu, P., Rahimi, R., Allan, J.: Towards explainable search results: a listwise explanation generator. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 669–680. SIGIR 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3477495.3532067

  53. Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking: a survey. arXiv:2103.14000 [cs] (2021). http://arxiv.org/abs/2103.14000

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860621.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangyi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Draws, T., Cau, F., Barile, F., Rieger, A., Tintarev, N. (2023). Explaining Search Result Stances to Opinionated People. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1902. Springer, Cham. https://doi.org/10.1007/978-3-031-44067-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44067-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44066-3

  • Online ISBN: 978-3-031-44067-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics