Skip to main content

Optimized Custom Dataset for Efficient Detection of Underwater Trash

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14136))

Included in the following conference series:

Abstract

Accurately quantifying and removing submerged underwater waste plays a crucial role in safeguarding marine life and preserving the environment. While detecting floating and surface debris is relatively straightforward, quantifying submerged waste presents significant challenges due to factors like light refraction, absorption, suspended particles, and color distortion. This paper addresses these challenges by proposing the development of a custom dataset and an efficient detection approach for submerged marine debris. The dataset encompasses diverse underwater environments and incorporates annotations for precise labeling of debris instances. Ultimately, the primary objective of this custom dataset is to enhance the diversity of litter instances and improve their detection accuracy in deep submerged environments by leveraging state-of-the-art deep learning architectures. The source code to replicate the results in this paper can be found at GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coyle, R., Hardiman, G., Driscoll, K.O.: Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020). https://doi.org/10.1016/j.cscee.2020.100010, https://www.sciencedirect.com/science/article/pii/S2666016420300086

  2. Derraik, J.G.B.: The pollution of the marine environment by plastic debris: a review. Marine Pollution Bull. 44(9), 842–52 (2002)

    Article  Google Scholar 

  3. Honingh, D., van Emmerik, T., Uijttewaal, W., Kardhana, H., Hoes, O., van de Giesen, N.: Urban river water level increase through plastic waste accumulation at a rack structure. Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.00028

  4. Layes of the oceans. https://www.sas.upenn.edu/msheila/biolumevolution.html

  5. Xiao, Y., et al.: A review of object detection based on deep learning. Multimedia Tools Appl. 79(33–34), 23729–23791 (2020). https://doi.org/10.1007/s11042-020-08976-6

  6. Andreu-Perez, J., Deligianni, F., Ravi, D., Yang, G.-Z.: Artificial Intelligence and Robotics (2018). https://doi.org/10.48550/ARXIV.1803.10813. https://arxiv.org/abs/1803.10813

  7. N Oceanic, A Administration: What is marine debris?. https://oceanservice.noaa.gov/facts/marinedebris.html

  8. Yuan, X., Martínez-Ortega, J.-F., Fernández, J.A.S., Eckert, M.: Aekf-slam: A new algorithm for robotic underwater navigation. Sensors 17(5), 1174 (2017)

    Article  Google Scholar 

  9. Torrey, L.A., Shavlik, J.W.: Chapter 11 transfer learning (2009)

    Google Scholar 

  10. Drever, M.C., Provencher, J.F., O’Hara, P.D., Wilson, L., Bowes, V., Bergman, C.M.: Are ocean conditions and plastic debris resulting in a ‘double whammy’ for marine birds? Marine Pollution Bull. 133, 684–692 (2018). https://doi.org/10.1016/j.marpolbul.2018.06.028, https://www.sciencedirect.com/science/article/pii/S0025326X18304259

  11. Tensorflow “tensorflow object detection zoo. https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detectionmodelzoo.md

  12. Derraik, J.G.: The pollution of the marine environment by plastic debris: a review. Marine Pollution Bull. 44(9), 842–852 (2002). https://doi.org/10.1016/S0025-326X(02)00220-5, https://www.sciencedirect.com/science/article/pii/S0025326X02002205

  13. Thompson, R., et al.: Lost at sea: where is all the plastic? Science (New York) 304, 838 (2004). https://doi.org/10.1126/science.1094559

    Article  Google Scholar 

  14. Jambeck, J., et al.: Marine pollution. plastic waste inputs from land into the ocean. Science (New York) 347, 768–771 (2015) . https://doi.org/10.1126/science.1260352

  15. Jia, T., et al.: Deep learning for detecting macroplastic litter in water bodies: A review. Water Res. 119632 (2023)

    Google Scholar 

  16. Zocco, F., Lin, T.-C., Huang, C.-I., Wang, H.-C., Khyam, M.O., Van, M.: Towards more efficient efficientdets and real-time marine debris detection. IEEE Robotics Autom. Lett. 8(4), 2134–2141 (2023)

    Article  Google Scholar 

  17. Fred cars. https://www.sandiego.edu/news/detail.php?_focus=72984

  18. Kulkarni, S., Junghare, S.: Robot based indoor autonomous trash detection algorithm using ultrasonic sensors, pp. 1–5 (2013). https://doi.org/10.1109/CARE.2013.6733698

  19. Girdhar, Y., et al.: MARE: marine autonomous robotic explorer. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), San Francisco, USA, pp. 5048–5053 (2011)

    Google Scholar 

  20. Fulton, M., Hong, J., Islam, M., Sattar, J.: Robotic detection of marine litter using deep visual detection models

    Google Scholar 

  21. Bernstein, M., Graham, R., Cline, D., Dolan, J.M., Rajan, K.: Learning-Based Event Response For Marine Robotics, pp. 3362–3367 (2013)

    Google Scholar 

  22. Singh, D., Valdenegro-Toro, M.: The marine debris dataset for forward-looking sonar semantic segmentation, arXiv: 2108.06800

  23. Stutters, L., Liu, H., Tiltman, C., Brown, D.J.: Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst. Man Cybern. Part C (Appli. Rev.) 38(4), 581–589 (2008). https://doi.org/10.1109/TSMCC.2008.919147

  24. Majchrowska, S., et al.: Learning-based waste detection in natural and urban environments. Waste Manag. 138, 274–284 (2022). https://doi.org/10.1016/j.wasman.2021.12.001, https://www.sciencedirect.com/science/article/pii/S0956053X21006474

  25. Alexandrova, S., Tatlock, Z., Cakmak, M.: Roboflow: a flow-based visual programming language for mobile manipulation tasks In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5537–5544 (2015). https://doi.org/10.1109/ICRA.2015.7139973

  26. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). https://doi.org/10.48550/ARXIV.2207.02696, https://arxiv.org/abs/2207.02696

  27. Jocher, G. et al.: Ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (Nov 2022). https://doi.org/10.5281/zenodo.7347926

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385

  29. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and confidence intervals. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 451–466. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaskaran Singh Walia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walia, J.S., Seemakurthy, K. (2023). Optimized Custom Dataset for Efficient Detection of Underwater Trash. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics