Skip to main content

A Quantitative Approach to Coordinated Scaling of Resources in Complex Cloud Computing Workflows

  • Conference paper
  • First Online:
Computer Performance Engineering and Stochastic Modelling (EPEW 2023, ASMTA 2023)

Abstract

Resource scaling is widely employed in cloud computing to adapt system operation to internal (i.e., application) and external (i.e., environment) changes. We present a quantitative approach for coordinated vertical scaling of resources in cloud computing workflows, aimed at satisfying an agreed Service Level Objective (SLO) by improving the workflow end-to-end (e2e) response time distribution. Workflows consist of IaaS services running on dedicated clusters, statically reserved before execution. Services are composed through sequence, choice/merge, and balanced split/join blocks, and have generally distributed (i.e., non-Markovian) durations possibly over bounded supports, facilitating fitting of analytical distributions from observed data. Resource allocation is performed through an efficient heuristics guided by the mean makespans of sub-workflows. The heuristics performs a top-down visit of the hierarchy of services, and it exploits an efficient compositional method to derive the response time distribution and the mean makespan of each sub-workflow. Experimental results on a workflow with high concurrency degree appear promising for feasibility and effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud infrastructures. In: IEEE Network Operations and Management Symposium, pp. 204–212. IEEE (2012)

    Google Scholar 

  2. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice architecture. In: IEEE International Conference on SO Computing and Applications, pp. 44–51. IEEE (2016)

    Google Scholar 

  3. Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., Kounev, S.: Chameleon: a hybrid, proactive auto-scaling mechanism on a level-playing field. IEEE Trans. Parallel Distrib. Syst. 30(4), 800–813 (2018)

    Google Scholar 

  4. Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N., Kounev, S.: Chamulteon: coordinated auto-scaling of micro-services. In: IEEE International Conference on Distributed Computing Systems, pp. 2015–2025. IEEE (2019)

    Google Scholar 

  5. Berg, B., Dorsman, J.L., Harchol-Balter, M.: Towards optimality in parallel scheduling. Proc. ACM Meas. Anal. Comput. Syst. 1(2), 40:1–40:30 (2017)

    Google Scholar 

  6. Bi, J., Zhu, Z., Tian, R., Wang, Q.: Dynamic provisioning modeling for virtualized multi-tier applications in cloud data center. In: IEEE International Conference on Cloud Computing, pp. 370–377. IEEE (2010)

    Google Scholar 

  7. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of composite web services. In: IEEE International Conference on Web Ser, pp. 121–129. IEEE (2005)

    Google Scholar 

  9. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R.: Moses: a framework for GOS driven runtime adaptation of service-oriented systems. IEEE Trans. on Softw. Eng. 38(5), 1138–1159 (2011)

    Article  Google Scholar 

  10. Carnevali, L., Paolieri, M., Reali, R., Vicario, E.: Compositional safe approximation of response time distribution of complex workflows. In: Abate, A., Marin, A. (eds.) Quantitative Evaluation of Systems: 18th International Conference, QEST 2021, Paris, France, August 23–27, 2021, Proceedings, pp. 83–104. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85172-9_5

    Chapter  MATH  Google Scholar 

  11. Carnevali, L., Paolieri, M., Reali, R., Vicario, E.: Compositional safe approximation of response time probability density function of complex workflows. ACM Trans. Model. Comput. Simul. (2023)

    Google Scholar 

  12. Carnevali, L., Reali, R., Vicario, E.: Eulero: a tool for quantitative modeling and evaluation of complex workflows. In: Ábrahám, E., Paolieri, M. (eds.) Quantitative Evaluation of Systems: 19th International Conference, QEST 2022, Warsaw, Poland, September 12–16, 2022, Proceedings, pp. 255–272. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16336-4_13

    Chapter  Google Scholar 

  13. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud autoscaling systems. arXiv preprint arXiv:1609.03590 (2016)

  14. Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A.: Dynamic scaling of web applications in a virtualized cloud computing environment. In: IEEE International Conference on e-Business Engineering, pp. 281–286. IEEE (2009)

    Google Scholar 

  15. Farokhi, S., Lakew, E.B., Klein, C., Brandic, I., Elmroth, E.: Coordinating CPU and memory elasticity controllers to meet service response time constraints. In: International Conference on Cloud and Autonomic Computing, pp. 69–80. IEEE (2015)

    Google Scholar 

  16. Fox, A., et al.: Above the Clouds: A Berkeley View of Cloud Computing. Dept. Electrical Eng. and Comput. Sci., University of California, Berkeley, Rep. UCB/EECS 28(13), 2009 (2009)

    Google Scholar 

  17. Gias, A.U., Casale, G., Woodside, M.: Atom: Model-driven autoscaling for microservices. In: International Conference on Distributed Computing System, pp. 1994–2004. IEEE (2019)

    Google Scholar 

  18. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perf. Eval. 69(7–8), 315–335 (2012)

    Article  Google Scholar 

  19. Incerto, E., Tribastone, M., Trubiani, C.: Combined vertical and horizontal autoscaling through model predictive control. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018: Parallel Processing: 24th International Conference on Parallel and Distributed Computing, Turin, Italy, August 27 - 31, 2018, Proceedings, pp. 147–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_11

    Chapter  Google Scholar 

  20. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Futur. Gener. Comput. Syst. 27(6), 871–879 (2011)

    Article  Google Scholar 

  21. Lakew, E.B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E.: Towards faster response time models for vertical elasticity. In: IEEE/ACM International Conference on Utility and Cloud Computing, pp. 560–565. IEEE (2014)

    Google Scholar 

  22. Liu, J., Zhang, S., Wang, Q., Wei, J.: Coordinating fast concurrency adapting with autoscaling for SLO oriented web applications. IEEE Trans. Parallel Distrib. Syst. 33(12), 3349–3362 (2022)

    Google Scholar 

  23. Lynn, T., Rosati, P., Lejeune, A., Emeakaroha, V.: A preliminary review of enterprise serverless cloud computing (function-as-a-service) platforms. In: IEEE International Conference on Cloud Computing Technology and Science, pp. 162–169. IEEE (2017)

    Google Scholar 

  24. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: Agile: Elastic distributed resource scaling for infrastructure-as-a-service (2013)

    Google Scholar 

  25. Qiu, H., Banerjee, S.S., Jha, S., Kalbarczyk, Z.T., Iyer, R.K.: Firm: An intelligent fine-grained resource management framework for SLO-oriented microservices. In: USENIX Symposium on Operating Systems Design and Implementation (2020)

    Google Scholar 

  26. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM Comput. Surv. 51(4), 1–33 (2018)

    Article  Google Scholar 

  27. Rahman, J., Lama, P.: Predicting the end-to-end tail latency of containerized microservices in the cloud. In: International Conference on Cloud Engineering, pp. 200–210. IEEE (2019)

    Google Scholar 

  28. Rose, K., Eldridge, S., Chapin, L.: The internet of things: an overview. The internet society (ISOC) 80, 1–50 (2015)

    Google Scholar 

  29. Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., Dustdar, S.: Towards composition as a service-a quality of service driven approach. In: IEEE International Confernce on Data Engineering, pp. 1733–1740. IEEE (2009)

    Google Scholar 

  30. Russell, N., Ter Hofstede, A.H., Van Der Aalst, W.M., Mulyar, N.: Workflow control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter. org 2006 (2006)

    Google Scholar 

  31. Salah, K., Elbadawi, K., Boutaba, R.: An analytical model for estimating cloud resources of elastic services. J. of Network and Sys. Manag. 24, 285–308 (2016)

    Article  Google Scholar 

  32. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

    Google Scholar 

  33. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-a-service computing. In: IEEE/ACM International Symposium on microarchitecture, pp. 1063–1075 (2019)

    Google Scholar 

  34. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing, pp. 1–14 (2011)

    Google Scholar 

  35. Stieß, S., Becker, S., Ege, F., Höppner, S., Tichy, M.: Coordination and explanation of reconfigurations in self-adaptive high-performance systems. In: International Conference on Model Driven Engineering Languages and Systems: Companion Proc, pp. 486–490 (2022)

    Google Scholar 

  36. Trivedi, K.S., Sahner, R.: Sharpe at the age of twenty two. ACM SIGMETRICS Performance Eval. Rev. 36(4), 52–57 (2009)

    Article  Google Scholar 

  37. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. (TAAS) 3(1), 1–39 (2008)

    Google Scholar 

  38. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. on Soft. Eng. 35(5), 703–719 (2009)

    Article  Google Scholar 

  39. Yazdanov, L., Fetzer, C.: Vertical scaling for prioritized VMs provisioning. In: International Conference on Cloud and Green Computing, pp. 118–125. IEEE (2012)

    Google Scholar 

  40. Zheng, Z., Trivedi, K.S., Qiu, K., Xia, R.: Semi-Markov models of composite web services for their performance, reliability and bottlenecks. IEEE Trans. Serv. Comput. 10(3), 448–460 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001 - program “RESTART”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Reali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carnevali, L., Paolieri, M., Picano, B., Reali, R., Scommegna, L., Vicario, E. (2023). A Quantitative Approach to Coordinated Scaling of Resources in Complex Cloud Computing Workflows. In: Iacono, M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds) Computer Performance Engineering and Stochastic Modelling. EPEW ASMTA 2023 2023. Lecture Notes in Computer Science, vol 14231. Springer, Cham. https://doi.org/10.1007/978-3-031-43185-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43185-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43184-5

  • Online ISBN: 978-3-031-43185-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics