Skip to main content

Explainable Artificial Intelligence with Scaling Techniques to Classify Breast Cancer Images

  • Chapter
  • First Online:
Explainable Machine Learning for Multimedia Based Healthcare Applications

Abstract

According to the Breast Cancer Institute, one of the most hazardous diseases for women is breast cancer (BCI). Clinical specialists claim that detecting this malignancy early can save lives. More than 120 distinct tumors and related hereditary illnesses have individualized resources available, according to cancer.net. To diagnose breast cancer, machine learning techniques are mostly used. This research projects the use of eight machine learning (ML) approaches to accurately detect and classify breast cancer images as benign and malignant. Using Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, various scaling techniques were used on the eight different algorithms to build the projected model. Various libraries in Python programing language were used in Jupyter environments to achieve classification objectives. The results obtained from this implementation show that the Random Forest (RF) model gave the best classification results with 98.60% accuracy, 98.21% f1-score, 98.21% precision, 98.21% sensitivity, and false positive rate (FPR) of 1 on L2 scaling from other ML approaches implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awotunde, J. B., Adeniyi, E. A., Ajamu, G. J., Balogun, G. B., & Taofeek-Ibrahim, F. A. (2022). Explainable artificial intelligence in genomic sequence for healthcare systems prediction. In Connected e-health (pp. 417–437). Springer.

    Chapter  Google Scholar 

  2. Ogundokun, R. O., Maskeliūnas, R., & Damaševičius, R. (2022). Human posture detection using image augmentation and hyperparameter-optimized transfer learning algorithms. Applied Sciences, 12(19), 10156.

    Article  Google Scholar 

  3. Pärtel, J., Pärtel, M., & Wäldchen, J. (2021). Plant image identification application demonstrates high accuracy in Northern Europe. AoB Plants, 13(4). https://doi.org/10.1093/AOBPLA/PLAB050

  4. Bhowmik, A., & Eskreis-Winkler, S. (2022). Deep learning in breast imaging. BJR|Open, 4, 20210060.

    Article  Google Scholar 

  5. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/S41568-018-0016-5

    Article  Google Scholar 

  6. Taylor-Phillips, S., Seedat, F., Kijauskaite, G., Marshall, J., Halligan, S., Hyde, C., Given-Wilson, R., Wilkinson, L., Denniston, A. K., Glocker, B., Garrett, P., Mackie, A., & Steele, R. J. (2022). UK National Screening Committee’s approach to reviewing evidence on artificial intelligence in breast cancer screening. The Lancet Digital Health, 4(7), e558–e565. https://doi.org/10.1016/S2589-7500(22)00088-7

    Article  Google Scholar 

  7. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Undefined, 25(1), 44–56. https://doi.org/10.1038/S41591-018-0300-7

    Article  Google Scholar 

  8. Yin, X., Chen, Y., Ruze, R., Xu, R., Song, J., Wang, C., & Xu, Q. (2022). The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduction and Targeted Therapy, 7(1), 324. https://doi.org/10.1038/s41392-022-01178-6

    Article  Google Scholar 

  9. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/CAAC.21708

    Article  Google Scholar 

  10. Ogundokun, R. O., Misra, S., Douglas, M., Damaševičius, R., & Maskeliūnas, R. (2022). Medical Internet-of-Things based breast cancer diagnosis using hyperparameter-optimized neural networks. Future Internet, 14(5), 153. https://doi.org/10.3390/fi14050153

    Article  Google Scholar 

  11. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/CAAC.21660

    Article  Google Scholar 

  12. Riley, D., Charlton, M., Chrischilles, E. A., Lizarraga, I. M., Phadke, S., Smith, B. J., Skibbe, A., & Lynch, C. F. (2022). Hospital rurality and gene expression profiling for early-stage breast cancer among Iowa residents (2010–2018). The Breast Journal, 9, 1–11. https://doi.org/10.1155/2022/8582894

    Article  Google Scholar 

  13. Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases, 5(2), 77–106. https://doi.org/10.1016/J.GENDIS.2018.05.001

    Article  Google Scholar 

  14. Abu Al-Haija, Q., & Adebanjo, A. (2020). Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. IEEE Xplore.

    Google Scholar 

  15. Marmot, M. G., Altman, D. G., Cameron, D. A., Dewar, J. A., Thompson, S. G., & Wilcox, M. (2013). The benefits and harms of breast cancer screening: An independent review. British Journal of Cancer, 108(11), 2205–2240. https://doi.org/10.1038/BJC.2013.177

    Article  Google Scholar 

  16. Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I. T., Zackrisson, S., & Senkus, E. (2019). Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment, and follow-up†. Annals of Oncology, 30(8), 1194–1220. https://doi.org/10.1093/ANNONC/MDZ173

    Article  Google Scholar 

  17. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., et al. (2020). Erratum: Addendum: International evaluation of an AI system for breast cancer screening (Nature (2020) 577 7788 (89–94)). Nature, 586(7829), E19. https://doi.org/10.1038/S41586-020-2679-9

    Article  Google Scholar 

  18. Duijm, L. E., Broeders, M. J., Setz-Pels, W., van Breest Smallenburg, V., van Beek, H. C., Donkers-van Rossum, A. B., et al. (2022). Effects of nonparticipation at previous screening rounds on the characteristics of screen-detected breast cancers. European Journal of Radiology, 154, 110391.

    Article  Google Scholar 

  19. Adegun, A. A., Viriri, S., & Ogundokun, R. O. (2021). Deep learning approach for medical image analysis. Computational Intelligence and Neuroscience, 2021, 1–9. https://doi.org/10.1155/2021/6215281

    Article  Google Scholar 

  20. Soleiman, M., & Yari, H. (2021). Approaches to breast cancer diagnosis. Khazar Journal of Science and Technology, 5, 29.

    Google Scholar 

  21. Brady, A. P. (2017). Error and discrepancy in radiology: Inevitable or avoidable? Insights into Imaging, 8(1), 171–182. https://doi.org/10.1007/S13244-016-0534-1

    Article  Google Scholar 

  22. Artificial intelligence in mammography Medtech innovation briefing. (2021). www.nice.org.uk/guidance/mib242

  23. Mendelson, E. B. (2019). Artificial intelligence in breast imaging: Potentials and limitations. American Journal of Roentgenology, 212(2), 293–299. https://doi.org/10.2214/AJR.18.20532

    Article  Google Scholar 

  24. Awotunde, J. B., Adeniyi, A. E., Ajagbe, S. A., Jimoh, R. G., & Bhoi, A. K. (2022). Swarm intelligence and evolutionary algorithms in processing healthcare data. In Connected e-health (pp. 105–124). Springer.

    Chapter  Google Scholar 

  25. Geras, K. J., Mann, R. M., & Moy, L. (2019). Artificial intelligence for mammography and digital breast tomosynthesis: Current concepts and future perspectives. Radiology, 293(2), 246–259. https://doi.org/10.1148/RADIOL.2019182627

    Article  Google Scholar 

  26. Abiodun, M. K., Misra, S., Awotunde, J. B., Adewole, S., Joshua, A., & Oluranti, J. (2021, December). Comparing the performance of various supervised machine learning techniques for early detection of breast cancer. In International conference on hybrid intelligent systems (pp. 473–482). Springer.

    Google Scholar 

  27. Dauda, O. I., Awotunde, J. B., AbdulRaheem, M., & Salihu, S. A. (2022). Basic issues and challenges on Explainable Artificial Intelligence (XAI) in healthcare systems. In Principles and methods of explainable artificial intelligence in healthcare (pp. 248–271).

    Chapter  Google Scholar 

  28. Pawar, U., O’shea, D., Rea, S., & O’reilly, R. (2020). Explainable AI in healthcare.

    Google Scholar 

  29. Abiodun, K. M., Awotunde, J. B., Aremu, D. R., & Adeniyi, E. A. (2022). Explainable AI for fighting COVID-19 pandemic: Opportunities, challenges, and future prospects. In Computational intelligence for COVID-19 and future pandemics (pp. 315–332).

    Chapter  Google Scholar 

  30. Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. http://arxiv.org/abs/1705.07874

  31. Kokkotis, C., Giarmatzis, G., Giannakou, E., Moustakidis, S., Tsatalas, T., Tsiptsios, D., Vadikolias, K., & Aggelousis, N. (2022). An explainable machine learning pipeline for stroke prediction on imbalanced data. Diagnostics, 12(10), 2392. https://doi.org/10.3390/diagnostics12102392

    Article  Google Scholar 

  32. Gupta, A., Kaushik, D., Garg, M., & Verma, A. (2020). Machine learning model for breast cancer prediction. In 2020 fourth international conference on I-SMAC (IoT in social, mobile, analytics, and cloud) (I-SMAC) (pp. 472–477). https://doi.org/10.1109/I-SMAC49090.2020.9243323

    Chapter  Google Scholar 

  33. Mangukiya, M., Vaghani, A., & Savani, M. (2022). Breast cancer detection with machine learning. International Journal for Research in Applied Science and Engineering Technology, 10(2), 141–145. https://doi.org/10.22214/ijraset.2022.40204

    Article  Google Scholar 

  34. Folorunso, S. O., Awotunde, J. B., Adeniyi, E. A., Abiodun, K. M., & Ayo, F. E. (2021, November). Heart disease classification using machine learning models. In International conference on informatics and intelligent applications (pp. 35–49). Springer.

    Google Scholar 

  35. Omondiagbe, D. A., Veeramani, S., & Sidhu, A. S. (2019, April). Machine learning classification techniques for breast cancer diagnosis. In IOP Conference Series: Materials Science and Engineering (Vol. 495, No. 1, p. 012033). IOP Publishing.

    Google Scholar 

  36. Nemade, V., Pathak, S., & Dubey, A. K. (2022). A systematic literature review of breast cancer diagnosis using machine intelligence techniques. Archives of Computational Methods in Engineering, 29, 4401–4430.

    Article  Google Scholar 

  37. Tiwari, M., Bharuka, R., Shah, P., & Lokare, R. (2020). Breast cancer prediction using deep learning and machine learning techniques. Available at SSRN 3558786.

    Google Scholar 

  38. Debelee, T. G., Gebreselasie, A., Schwenker, F., Amirian, M., & Yohannes, D. (2019). Classification of mammograms using texture and CNN based extracted features. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 42, 79–97. Trans Tech Publications Ltd.

    Article  Google Scholar 

  39. Al-Haija, Q. A., & Adebanjo, A. (2020). Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. In 2020 IEEE International IoT, Electronics and Mechatronics conference (IEMTRONICS), 1–7. https://doi.org/10.1109/IEMTRONICS51293.2020.9216455.

  40. Saoud, H., Ghadi, A., & Ghailani, M. (2019). A proposed approach for breast cancer diagnosis using machine learning. In Proceedings of the 4th international conference on Smart City Applications (pp. 1–5). https://doi.org/10.1145/3368756.3369089

    Chapter  Google Scholar 

  41. Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1995). UCI machine learning repository. Breast Cancer Wisconsin (Diagnostic) Data Set.

    Google Scholar 

  42. Memon, M. H., Li, J. P., Haq, A. U., Memon, M. H., & Zhou, W. (2019). Breast cancer detection in the IoT health environment using modified recursive feature selection. Wireless Communications and Mobile Computing, 2019, 1–19. https://doi.org/10.1155/2019/5176705

    Article  Google Scholar 

  43. Binary Logistic Regression Model of ML. (n.d.). Retrieved September 27, 2022, from https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_binary_logistic_regression_model.htm

  44. Logistic-curve – Sigmoid function – Wikipedia. (n.d.). Retrieved September 27, 2022, from https://en.wikipedia.org/wiki/Sigmoid_function#/media/File:Logistic-curve.svg

  45. Classification: True vs. False and Positive vs. Negative | Machine Learning | Google Developers. (n.d.). Retrieved September 27, 2022, from https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative

  46. Lichman, M. (2017). UCI machine learning repository. Breast Cancer Wisconsin (Diagnostic) Data Set (2014).

    Google Scholar 

  47. machine-learning-1/logistic-regression-model.md at master · EyasuTew/machine-learning-1 · GitHub. (n.d.). Retrieved September 27, 2022, from https://github.com/EyasuTew/machine-learning-1/blob/master/week3/logistic-regression-model.md

  48. Support Vector Machine(SVM) Algorithms under Supervised Machine Learning (Tutorial) | by Neelam Tyagi | Analytics Steps | Medium. (n.d.). Retrieved September 27, 2022, from https://medium.com/analytics-steps/support-vector-machine-svm-algorithms-under-supervised-machine-learning-tutorial-b5a385f05f89

  49. Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient Learning Machines (pp. 39–66). https://doi.org/10.1007/978-1-4302-5990-9_3

    Chapter  Google Scholar 

  50. Support Vector Machine — Introduction to Machine Learning Algorithms | by Rohith Gandhi | Towards Data Science. (n.d.). Retrieved September 27, 2022, from https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

  51. Machine Learning Random Forest Algorithm – Javatpoint. (n.d.). Retrieved September 28, 2022, from https://www.javatpoint.com/machine-learning-random-forest-algorithm

  52. Nahid, A., & Kong, Y. (2017). Involvement of machine learning for breast cancer image classification: A survey. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2017/3781951

  53. Bhise, S., Gadekar, S., Gaur, A., Bepari, S., Kale, D., & Aswale, S. (2021). Breast cancer detection using machine learning techniques. International Journal of Engineering Research & Technology (IJERT), 10, 98.

    Google Scholar 

  54. ROC Curve & AUC Explained with Python Examples – Data Analytics. (n.d.). Retrieved September 28, 2022, from https://vitalflux.com/roc-curve-auc-python-false-positive-true-positive-rate/

  55. Molnar, C. (2022). Interpretable machine learning: A guide for making black box models explainable. International Kindle Paperwhite.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adelodun, A.B., Ogundokun, R.O., Yekini, A.O., Awotunde, J.B., Timothy, C.C. (2023). Explainable Artificial Intelligence with Scaling Techniques to Classify Breast Cancer Images. In: Hossain, M.S., Kose, U., Gupta, D. (eds) Explainable Machine Learning for Multimedia Based Healthcare Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-38036-5_6

Download citation

Publish with us

Policies and ethics