Skip to main content

Learning-Based Privacy-Aware Maritime IoT Communications

  • Chapter
  • First Online:
Reinforcement Learning for Maritime Communications

Part of the book series: Wireless Networks ((WN))

Abstract

Mobile edge computing helps maritime IoT devices with energy harvesting to provide satisfactory experiences for computation-intensive applications in maritime communication systems, such as real-time cargo status notification, emergency rescue in maritime affairs, and accurate early warning. In this chapter, we present an RL-based privacy-aware offloading scheme to help maritime IoT devices protect both the user location privacy and the usage pattern privacy. More specifically, this scheme enables a maritime IoT device to choose the offloading rate that improves the computation performance, protects user privacy, and saves the energy of the IoT devices without being aware of the privacy leakage, energy consumption, and edge computation model. This scheme uses transfer learning to reduce the random exploration at the initial learning process and applies a Dyna architecture that provides simulated offloading experiences to accelerate the learning process. Furthermore, a post-decision state learning method uses the known channel state model to improve the offloading performance. The performance bound of this scheme is provided regarding the privacy level, the energy consumption, and the computation latency for three typical ship offloading scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Mao, C. You, J. Zhang, et al., A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tut. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  2. W. Zhang, Y. Wen, K. Guan, et al., Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 12(9), 4569–4581 (2013)

    Article  Google Scholar 

  3. C. You, K. Huang, H. Chae, et al., Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2017)

    Article  Google Scholar 

  4. Y. Mao, J. Zhang, K. Letaief, Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  5. P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi-access edge computing for internet of things realization. IEEE Commun. Surv. Tut. 20(4), 2961–2991 (2018)

    Article  Google Scholar 

  6. T.Q. Dinh, J. Tang, Q.D. La, T.Q.S. Quek, Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans. Commun. 65(8), 3571–3584 (2017)

    Google Scholar 

  7. T. Yang, H. Feng, Gao, et al., Two-stage offloading optimization for energy–latency tradeoff with mobile edge computing in maritime internet of things. IEEE Internet Things J. 7(7), 5954–5963 (2020)

    Google Scholar 

  8. S. Jiang, X. Su, Y. Zhou, Data privacy protection for maritime mobile terminals, in Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, Oct. 2021

    Google Scholar 

  9. S. Ulukus, A. Yener, E. Erkip, et al., Energy harvesting wireless communications: a review of recent advances. IEEE J. Sel. Areas Commun. 33(3), 360–381 (2015)

    Article  Google Scholar 

  10. J.W. Kimball, B.T. Kuhn, R.S. Balog, A system design approach for unattended solar energy harvesting supply. IEEE Trans. Power Electron. 24(4), 952–962 (2009)

    Article  Google Scholar 

  11. M. Han, J. Duan, S. Khairy, L.X. Cai, Enabling sustainable underwater iot networks with energy harvesting: a decentralized reinforcement learning approach. IEEE Internet Things J. 7(10), 9953–9964 (2020)

    Article  Google Scholar 

  12. F. Kong, C. Dong, X. Liu, H. Zeng, Quantity versus quality: optimal harvesting wind power for the smart grid. Proc. IEEE 102(11), 1762–1776 (2014)

    Article  Google Scholar 

  13. S. Kim, R. Vyas, Bito, et al., Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102(11), 1649–1666 (2014)

    Google Scholar 

  14. Y. Sun, C. Song, S. Yu, et al., Energy-efficient task offloading based on differential evolution in edge computing system with energy harvesting. IEEE Access 9, 16,383–16,391 (2021)

    Article  Google Scholar 

  15. J. Xu, L. Chen, S. Ren, Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–373 (2017)

    Article  Google Scholar 

  16. F. Wang, J. Xu, X. Wang, et al., Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2017)

    Article  Google Scholar 

  17. A. Hosseini-Fahraji, P. Loghmannia, K. Zeng, et al., Energy harvesting long-range marine communication, in Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Toronto, CanadaJul, Jul. 2020

    Google Scholar 

  18. Y. Chao, Autonomous underwater vehicles and sensors powered by ocean thermal energy, in Proceedings of the OCEANS, Shanghai, China, Apr. 2016

    Google Scholar 

  19. A. Alrawais, A. Alhothaily, C. Hu, et al., Fog computing for the internet of things: security and privacy issues. IEEE Internet Comput. 21(2), 34–42 (2017)

    Article  Google Scholar 

  20. X. He, J. Liu, R. Jin, et al., Privacy-aware offloading in mobile-edge computing, in Proceedings of the IEEE Global Communications Conference (GlobeCom), Singapore, Dec. 2017

    Google Scholar 

  21. L. Xiao, X. Wan, C. Dai, et al., Security in mobile edge caching with reinforcement learning. IEEE Wirel. Commun. 25(3), 1–7 (2018)

    Article  Google Scholar 

  22. S. Yi, Z. Qin, Q. Li, Security and privacy issues of fog computing: a survey, in Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications (WASA), Qufu, China, Aug. 2015

    Google Scholar 

  23. J. Ni, A. Zhang, X. Lin, et al., Security, privacy, and fairness in fog-based vehicular crowdsensing. IEEE Commun. Mag. 55(6), 146–152 (Jun. 2017)

    Article  Google Scholar 

  24. C. Xu, J. Ren, Y. Zhang, et al., Dppro: differentially private high-dimensional data release via random projection. IEEE Trans. Inf. Forensic Secur. 12(12), 3081–3093 (2017)

    Article  Google Scholar 

  25. J. Liu, K. Kumar, Y. Lu, Tradeoff between energy savings and privacy protection in computation offloading, in Proceedings of the ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), Austin, TX, Aug. 2010

    Google Scholar 

  26. J. Liu, Y. Lu, Energy savings in privacy-preserving computation offloading with protection by homomorphic encryption, in Proceedings of the International Conference Power-Aware Computing and Systems (HotPower), Berkeley, CA, Oct. 2010

    Google Scholar 

  27. R. Lu, X. Lin, X. Shen, SPOC: a secure and privacy-preserving opportunistic computing framework for mobile-healthcare emergency. IEEE Trans. Parallel. Distrib. Syst. 24(3), 614–624 (2013)

    Article  Google Scholar 

  28. Y. Wang, W. Feng, J. Wang, T.Q. Quek, Hybrid satellite-UAV-terrestrial networks for 6G ubiquitous coverage: a maritime communications perspective. IEEE J. Sel. Areas. Commun. 39(11), 3475–3490 (2021)

    Article  Google Scholar 

  29. H. Heidari, O. Onireti, R. Das, M. Imran, Energy harvesting and power management for IoT devices in the 5G era. IEEE Commun. Mag. 59(9), 91–97 (2021)

    Article  Google Scholar 

  30. T. Yang, H. Feng, C. Yang, et al., Multivessel computation offloading in maritime mobile edge computing network. IEEE Internet Things J. 6(3), 4063–4073 (2018)

    Article  Google Scholar 

  31. N. Abbas, Y. Zhang, A. Taherkordi, et al., Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018)

    Article  Google Scholar 

  32. M. Chiang, T. Zhang, Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)

    Article  Google Scholar 

  33. J. Ren, H. Guo, C. Xu, et al., Serving at the edge: a scalable IoT architecture based on transparent computing. IEEE Netw. 31(5), 96–105 (2017)

    Article  Google Scholar 

  34. X. Peng, J. Ren, L. She, et al., BOAT: a block-streaming app execution scheme for lightweight iot devices. IEEE Internet Things J. 5(3), 1816–1829 (2018)

    Article  Google Scholar 

  35. S. Gao, T. Yang, H. Ni, G. Zhang, Multi-armed bandits scheme for tasks offloading in mec-enabled maritime communication networks, in Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, Aug. 2020

    Google Scholar 

  36. T. Xia, M.M. Wang, J. Zhang, L. Wang, Maritime internet of things: challenges and solutions. IEEE Wirel. Commun. 27(2), 188–196 (2020)

    Article  Google Scholar 

  37. J. Pavur, D. Moser, M. Strohmeier, V. Lenders, I. Martinovic, A tale of sea and sky on the security of maritime vsat communications, in Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, Jul. 2020

    Google Scholar 

  38. X. Chen, J. Wu, Y. Cai, et al., Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 33(4), 627–640 (2015)

    Article  Google Scholar 

  39. L. Xiao, C. Xie, T. Chen, et al., A mobile offloading game against smart attacks. IEEE Access 4, 2281–2291 (2016)

    Article  Google Scholar 

  40. C. Li, J. Xia, F. Liu, D. Li, L. Fan, G.K. Karagiannidis, A. Nallanathan, Dynamic offloading for multiuser muti-cap mec networks: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 70(3), 2922–2927 (2021)

    Article  Google Scholar 

  41. Y.-C. Wu, T.Q. Dinh, Y. Fu, C. Lin, T.Q.S. Quek, A hybrid DQN and optimization approach for strategy and resource allocation in MEC networks. IEEE Trans. Wirel. Commun. 20(7), 4282–4295 (2021)

    Article  Google Scholar 

  42. R. Sutton, A. Barto, Reinforcement Learning: An Introduction (MIT press, Cambridge, MA, 1998)

    MATH  Google Scholar 

  43. X. He, H. Dai, P. Ning, Improving learning and adaptation in security games by exploiting information asymmetry, in Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, Aug. 2015

    Google Scholar 

  44. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data. Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  45. W. Liu, J. Cao, L. Yang, et al., Appbooster: boosting the performance of interactive mobile applications with computation offloading and parameter tuning. IEEE Trans. Parallel. Distrib. Syst. 28(6), 1593–1606 (2017)

    Article  Google Scholar 

  46. N. Golrezaei, A. Molisch, A. Dimakis, et al., Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun. Mag. 51(4), 142–149 (2013)

    Article  Google Scholar 

  47. M. Xia, S. Aissa, On the efficiency of far-field wireless power transfer. IEEE Trans. Signal Proces. 63(11), 2835–2847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Zhang, Y. Qiao, L. She, et al., Two time-scale resource management for green internet of things networks. IEEE Internet Things J. 6(1), 545–556 (2019)

    Article  Google Scholar 

  49. L. Xiao, Y. Li, C. Dai, et al., Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Trans. Veh. Technol. 67(4), 3377–3389 (2018)

    Article  Google Scholar 

  50. O. Munoz, A. Pascual-Iserte, J. Vidal, Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans. Veh. Technol. 64(10), 4738–4755 (2015)

    Article  Google Scholar 

  51. X. Chen, L. Jiao, W. Li, et al., Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE Trans. Netw. 24(5), 2795–2808 (2016)

    Article  Google Scholar 

  52. N. Mastronarde, M. Van der Schaar, Fast reinforcement learning for energy-efficient wireless communication. IEEE Trans. Signal Proces. 59(12), 6262–6266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Xiao, Y. Li, X. Huang, et al., Cloud-based malware detection game for mobile devices with offloading. IEEE Trans. Mob. Comput. 16(10), 2742–2750 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, L., Yang, H., Zhuang, W., Min, M. (2023). Learning-Based Privacy-Aware Maritime IoT Communications. In: Reinforcement Learning for Maritime Communications. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-32138-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32138-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32137-5

  • Online ISBN: 978-3-031-32138-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics