Skip to main content

The Epigenetic Landscape of Meningiomas

  • Chapter
  • First Online:
Biological and Clinical Landscape of Meningiomas

Abstract

Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology. 2019; 21(Supplement_5):v1-v100.

    Google Scholar 

  2. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. Journal of neuro-oncology. 2010; 99(3):307-314.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konglund A, Rogne S, Lund-Johansen M, Scheie D, Helseth E, Meling T. Outcome following surgery for intracranial meningiomas in the aging. Acta Neurologica Scandinavica. 2013; 127(3):161-169.

    Article  CAS  PubMed  Google Scholar 

  4. Chamoun R, Krisht KM, Couldwell WT. Incidental meningiomas. Neurosurgical focus. 2011; 31(6):E19.

    Article  PubMed  Google Scholar 

  5. Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. The Lancet Oncology. 2016; 17(9):e383-e391.

    Article  PubMed  Google Scholar 

  6. Nassiri F, Mamatjan Y, Suppiah S, et al. DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-oncology. 2019; 21(7):901-910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suppiah S, Nassiri F, Bi WL, et al. Molecular and translational advances in meningiomas. Neuro-oncology. 2019; 21(Supplement_1):i4-i17.

    Google Scholar 

  8. Sahm F, Schrimpf D, Stichel D, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. The lancet oncology. 2017; 18(5):682-694.

    Article  CAS  PubMed  Google Scholar 

  9. Abedalthagafi M, Bi WL, Aizer AA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-oncology. 2016; 18(5):649-655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brastianos PK, Horowitz PM, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nature genetics. 2013; 45(3):285-289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Preusser M, Brastianos PK, Mawrin C. Advances in meningioma genetics: novel therapeutic opportunities. Nature Reviews Neurology. 2018; 14(2):106-115.

    Article  CAS  PubMed  Google Scholar 

  12. Strickland MR, Gill CM, Nayyar N, et al. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. Journal of neurosurgery. 2017; 127(2):438-444.

    Article  CAS  PubMed  Google Scholar 

  13. Yuzawa S, Nishihara H, Tanaka S. Genetic landscape of meningioma. Brain tumor pathology. 2016; 33(4):237-247.

    Article  CAS  PubMed  Google Scholar 

  14. Galani V, Lampri E, Varouktsi A, Alexiou G, Mitselou A, Kyritsis AP. Genetic and epigenetic alterations in meningiomas. Clinical neurology and neurosurgery. 2017; 158:119-125.

    Article  PubMed  Google Scholar 

  15. He S, Pham MH, Pease M, et al. A review of epigenetic and gene expression alterations associated with intracranial meningiomas. Neurosurgical focus. 2013; 35(6):E5.

    Article  PubMed  Google Scholar 

  16. Kishida Y, Natsume A, Kondo Y, et al. Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis. 2012; 33(2):436-441.

    Article  CAS  PubMed  Google Scholar 

  17. Murnyák B, Bognár L, Klekner Á, Hortobágyi T. Epigenetics of meningiomas. BioMed research international. 2015; 2015.

    Google Scholar 

  18. Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours—lessons from the past. Nature reviews Clinical oncology. 2013; 10(5):256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeWoskin VA, Million RP. The epigenetics pipeline: Nature Publishing Group; 2013.

    Book  Google Scholar 

  20. Tsai H-C, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell research. 2011; 21(3):502-517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esteller M. Cancer epigenetics for the 21st century: what’s next? Genes & cancer. 2011; 2(6):604-606.

    Article  CAS  Google Scholar 

  22. Das PM, Singal R. DNA methylation and cancer. Journal of clinical oncology. 2004; 22(22):4632-4642.

    Article  CAS  PubMed  Google Scholar 

  23. Bello MJ, Amiñoso C, Lopez-Marin I, et al. DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q. Acta neuropathologica. 2004; 108(5):413-421.

    Article  CAS  PubMed  Google Scholar 

  24. Linsler S, Kraemer D, Driess C, et al. Molecular biological determinations of meningioma progression and recurrence. PloS one. 2014; 9(4):e94987.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barski D, Wolter M, Reifenberger G, Riemenschneider MJ. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12. 3 and malignancy in meningiomas. Brain pathology. 2010; 20(3):623-631.

    Article  CAS  PubMed  Google Scholar 

  26. Guyot A, Duchesne M, Robert S, et al. Analysis of CDKN2A gene alterations in recurrent and non-recurrent meningioma. Journal of Neuro-Oncology. 2019; 145(3):449-459.

    Article  CAS  PubMed  Google Scholar 

  27. Nakane Y, Natsume A, Wakabayashi T, et al. Malignant transformation-related genes in meningiomas: allelic loss on 1p36 and methylation status of p73 and RASSF1A. Journal of neurosurgery. 2007; 107(2):398-404.

    Article  CAS  PubMed  Google Scholar 

  28. Hatzimichael E, Benetatos L, Dasoula A, et al. Absence of methylation-dependent transcriptional silencing in TP73 irrespective of the methylation status of the CDKN2A CpG Island in plasma cell neoplasia. Leukemia research. 2009; 33(9):1272-1275.

    Article  CAS  PubMed  Google Scholar 

  29. Inokuchi K, Hamaguchi H, Taniwaki M, Yamaguchi H, Tanosaki S, Dan K. Establishment of a cell line with AML1-MTG8, TP53, and TP73 abnormalities from acute myelogenous leukemia. Genes, Chromosomes and Cancer. 2001; 32(2):182-187.

    Article  CAS  PubMed  Google Scholar 

  30. Stiewe T, Pützer B. Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death & Differentiation. 2002; 9(3):237-245.

    Article  CAS  Google Scholar 

  31. López C, Kleinheinz K, Aukema SM, et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nature communications. 2019; 10(1):1-19.

    Article  Google Scholar 

  32. Costanzo A, Pediconi N, Narcisi A, et al. TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy. FEBS letters. 2014; 588(16):2590-2599.

    Article  CAS  PubMed  Google Scholar 

  33. Bello MJ, de Campos JM, Vaquero J, Kusak ME, Sarasa JL, Rey JA. High-resolution analysis of chromosome arm 1p alterations in meningioma. Cancer genetics and cytogenetics. 2000; 120(1):30-36.

    Article  CAS  PubMed  Google Scholar 

  34. Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A. Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. Journal of Neuropathology & Experimental Neurology. 2001; 60(6):628-636.

    Article  CAS  Google Scholar 

  35. Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M. Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer genetics and cytogenetics. 1999; 110(2):103-110.

    Article  CAS  PubMed  Google Scholar 

  36. Leone PE, Bello MJ, de Campos JM, et al. NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene. 1999; 18(13):2231-2239.

    Article  CAS  PubMed  Google Scholar 

  37. Lomas J, Bello MJ, Arjona D, et al. Analysis of p73 gene in meningiomas with deletion at 1p. Cancer genetics and cytogenetics. 2001; 129(1):88-91.

    Article  CAS  PubMed  Google Scholar 

  38. Müller P, Henn W, Niedermayer I, et al. Deletion of chromosome 1p and loss of expression of alkaline phosphatase indicate progression of meningiomas. Clinical cancer research. 1999; 5(11):3569-3577.

    PubMed  Google Scholar 

  39. Lomas J, Amiñoso C, Gonzalez-Gomez P, et al. Methylation status of TP73 in meningiomas. Cancer genetics and cytogenetics. 2004; 148(2):148-151.

    Article  CAS  PubMed  Google Scholar 

  40. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Disease markers. 2007; 23(1, 2):73-87.

    Google Scholar 

  41. Chan MW, Chan LW, Tang NL, et al. Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. International journal of cancer. 2003; 104(5):611-616.

    Article  CAS  PubMed  Google Scholar 

  42. Agathanggelou A, Bièche I, Ahmed-Choudhury J, et al. Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer Research. 2003; 63(17):5344-5351.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Agathanggelou A, Honorio S, Macartney DP, et al. Methylation associated inactivation of RASSF1A from region 3p21. 3 in lung, breast and ovarian tumours. Oncogene. 2001; 20(12):1509-1518.

    Article  CAS  PubMed  Google Scholar 

  44. Gao Y, Guan M, Su B, Liu W, Xu M, Lu Y. Hypermethylation of the RASSF1A gene in gliomas. Clinica chimica acta. 2004; 349(1-2):173-179.

    Article  CAS  Google Scholar 

  45. Hesson L, Bieche I, Krex D, et al. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21. 3 region in gliomas. Oncogene. 2004; 23(13):2408-2419.

    Article  CAS  PubMed  Google Scholar 

  46. Di Vinci A, Brigati C, Casciano I, et al. HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Translational research. 2012; 160(5):355-362.

    Article  PubMed  Google Scholar 

  47. Laffaire J, Everhard S, Idbaih A, et al. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro-oncology. 2010; 13(1):84-98.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related" self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. Journal of clinical oncology. 2008; 26(18):3015-3024.

    Article  CAS  PubMed  Google Scholar 

  49. Cimino PJ, Kim Y, Wu H-J, et al. Increased HOXA5 expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes & development. 2018; 32(7-8):512-523.

    Article  CAS  Google Scholar 

  50. Fan C, Liu W, Cao H, Wen C, Chen L, Jiang G. O 6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell death & disease. 2013; 4(10):e876-e876.

    Article  CAS  Google Scholar 

  51. Panagopoulos I, Gorunova L, Leske H, et al. Pyrosequencing analysis of MGMT promoter methylation in meningioma. Cancer Genomics-Proteomics. 2018; 15(5):379-385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larijani L, Madjd Z, Samadikuchaksaraei A, et al. Methylation of O6-methyl guanine methyltransferase gene promoter in meningiomas-comparison between tumor grades I, II, and III. Asian Pacific Journal of Cancer Prevention. 2014; 15(1):33-38.

    Article  PubMed  Google Scholar 

  53. Olar A, Wani KM, Wilson CD, Zadeh G, DeMonte F, Jones DT, Pfister SM, Sulman EP, Aldape KD. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017 Mar;133(3):431-444. https://doi.org/10.1007/s00401-017-1678-x. Epub 2017 Jan 27. PMID: 28130639; PMCID: PMC5600514.

  54. Maas SLN, Stichel D, Hielscher T, et al. Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. J Clin Oncol. 2021; 39(34):3839-3852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Driver J, Hoffman SE, Tavakol S, et al. A molecularly integrated grade for meningioma. Neuro Oncol. 2022; 24(5):796-808.

    Article  CAS  PubMed  Google Scholar 

  56. Hielscher T, Sill M, Sievers P, et al. Clinical implementation of integrated molecular-morphologic risk prediction for meningioma. Brain Pathol. 2022:e13132.

    Google Scholar 

  57. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal transduction and targeted therapy. 2016; 1(1):1-9.

    Article  Google Scholar 

  58. Monroig PdC, Calin GA. MicroRNA and epigenetics: diagnostic and therapeutic opportunities. Current pathobiology reports. 2013; 1(1):43-52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhi F, Zhou G, Wang S, et al. A microRNA expression signature predicts meningioma recurrence. International journal of cancer. 2013; 132(1):128-136.

    Article  CAS  PubMed  Google Scholar 

  60. Saydam O, Shen Y, Würdinger T, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Molecular and cellular biology. 2009; 29(21):5923-5940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El-Gewely MR, Andreassen M, Walquist M, et al. Differentially expressed microRNAs in meningiomas grades I and II suggest shared biomarkers with malignant tumors. Cancers. 2016; 8(3):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manvati S, Mangalhara KC, Kalaiarasan P, et al. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer cell international. 2019; 19(1):1-12.

    Article  CAS  Google Scholar 

  63. Su'e Chang LG, Yang Y, Tong D, et al. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget. 2015; 6(10):7675.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer management and research. 2019; 11:969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang S, Bian C, Yang Z, et al. miR-145 inhibits breast cancer cell growth through RTKN. International journal of oncology. 2009; 34(5):1461-1466.

    CAS  PubMed  Google Scholar 

  66. Kliese N, Gobrecht P, Pachow D, et al. miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene. 2013; 32(39):4712-4720.

    Article  CAS  PubMed  Google Scholar 

  67. Harmancı AS, Youngblood MW, Clark VE, et al. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature communications. 2017; 8(1):1-14.

    Article  Google Scholar 

  68. Wagner S, Ngezahayo A, Murua Escobar H, Nolte I. Role of miRNA let-7 and its major targets in prostate cancer. BioMed research international. 2014; 2014.

    Google Scholar 

  69. Powers JT, Tsanov KM, Pearson DS, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016; 535(7611):246-251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Erkan EP, Breakefield XO, Saydam O. miRNA signature of schwannomas: possible role (s) of “tumor suppressor” miRNAs in benign tumors. Oncotarget. 2011; 2(3):265.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Saydam O, Senol O, Würdinger T, et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer research. 2011; 71(3):852-861.

    Article  CAS  PubMed  Google Scholar 

  72. Ludwig N, Kim Y-J, Mueller SC, et al. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro-oncology. 2015; 17(9):1250-1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Werner TV, Hart M, Nickels R, et al. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany NY). 2017; 9(3):932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishikawa R, Goto Y, Sakamoto S, et al. Tumor-suppressive micro RNA-218 inhibits cancer cell migration and invasion via targeting of LASP 1 in prostate cancer. Cancer science. 2014; 105(7):802-811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bai H, Wu S. miR-451: a novel biomarker and potential therapeutic target for cancer. OncoTargets and therapy. 2019; 12:11069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeng T, Peng L, Chao C, et al. miR-451 inhibits invasion and proliferation of bladder cancer by regulating EMT. International journal of clinical and experimental pathology. 2014; 7(11):7653.

    PubMed  PubMed Central  Google Scholar 

  77. Huang J-Y, Zhang K, Chen D-Q, et al. MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma. Oncotarget. 2015; 6(21):18613.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang F, Liang S, Liu X, Han L, Wang J, Du Q. LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. OncoTargets and therapy. 2018; 11:6383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kong Y-G, Cui M, Chen S-M, Xu Y, Xu Y, Tao Z-Z. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene. 2018; 639:77-84.

    Article  CAS  PubMed  Google Scholar 

  80. Yuan B, Yang J, Gu H, Ma C. Down-regulation of LINC00460 represses metastasis of colorectal cancer via WWC2. Digestive Diseases and Sciences. 2020; 65(2):442-456.

    Article  CAS  PubMed  Google Scholar 

  81. Li K, Sun D, Gou Q, et al. Long non-coding RNA linc00460 promotes epithelial-mesenchymal transition and cell migration in lung cancer cells. Cancer letters. 2018; 420:80-90.

    Article  CAS  PubMed  Google Scholar 

  82. Xing H, Wang S, Li Q, Ma Y, Sun P. Long noncoding RNA LINC00460 targets miR-539/MMP-9 to promote meningioma progression and metastasis. Biomedicine & Pharmacotherapy. 2018; 105:677-682.

    Article  CAS  Google Scholar 

  83. Zhang X, Gejman R, Mahta A, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer research. 2010; 70(6):2350-2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. Journal of molecular endocrinology. 2012; 48(3):R45-R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harutyunyan AS, Krug B, Chen H, et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nature communications. 2019; 10(1):1-13.

    Article  CAS  Google Scholar 

  86. Hsieh I-y, He J, Wang L, et al. H3K27me3 loss plays a vital role in CEMIP mediated carcinogenesis and progression of breast cancer with poor prognosis. Biomedicine & Pharmacotherapy. 2020; 123:109728.

    Article  CAS  Google Scholar 

  87. Katz LM, Hielscher T, Liechty B, et al. Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta neuropathologica. 2018; 135(6):955-963.

    Article  CAS  PubMed  Google Scholar 

  88. Schaefer I-M, Fletcher CD, Hornick JL. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Modern Pathology. 2016; 29(1):4-13.

    Article  CAS  PubMed  Google Scholar 

  89. Tamagawa H, Oshima T, Numata M, et al. Global histone modification of H3K27 correlates with the outcomes in patients with metachronous liver metastasis of colorectal cancer. European Journal of Surgical Oncology (EJSO). 2013; 39(6):655-661.

    Article  CAS  PubMed  Google Scholar 

  90. Tang G, Guo J, Zhu Y, et al. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. International journal of oncology. 2018; 52(6):1899-1911.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer. International journal of biological sciences. 2012; 8(1):59.

    Article  CAS  PubMed  Google Scholar 

  92. Kleinschmidt-DeMasters BK, Levy JMM. H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clinical neuropathology. 2018; 37(2):53.

    Google Scholar 

  93. Himes BT, Zhang L, Daniels DJ. Treatment strategies in diffuse midline gliomas with the H3K27M mutation: the role of convection-enhanced delivery in overcoming anatomic challenges. Frontiers in oncology. 2019; 9:31.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bayliss J, Mukherjee P, Lu C, et al. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Science translational medicine. 2016; 8(366):366ra161-366ra161.

    Google Scholar 

  95. Gauchotte G, Peyre M, Pouget C, et al. Prognostic Value of Histopathological Features and Loss of H3K27me3 Immunolabeling in Anaplastic Meningioma: A Multicenter Retrospective Study. Journal of Neuropathology & Experimental Neurology. 2020.

    Google Scholar 

  96. Behling F, Fodi C, Gepfner-Tuma I, et al. H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro Oncol. 2020.

    Google Scholar 

  97. Lin CY, Erkek S, Tong Y, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016; 530(7588):57-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013; 155(4):934-947.

    Article  CAS  PubMed  Google Scholar 

  99. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013; 153(2):307-319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prager BC, Vasudevan HN, Dixit D, et al. The Meningioma Enhancer Landscape Delineates Novel Subgroups and Drives Druggable Dependencies. Cancer Discov. 2020; 10(11):1722-1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li T, Ren J, Ma J, et al. LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway. Biomed Pharmacother. 2019; 113:108718.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y, Yu R, Li Q, et al. SNHG1/miR-556-5p/TCF12 feedback loop enhances the tumorigenesis of meningioma through Wnt signaling pathway. J Cell Biochem. 2020; 121(2):1880-1889.

    Article  CAS  PubMed  Google Scholar 

  103. El-Habr EA, Levidou G, Trigka EA, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014; 465(4):473-485.

    Article  CAS  PubMed  Google Scholar 

  104. Smith MJ. Germline and somatic mutations in meningiomas. Cancer Genet. 2015; 208(4):107-114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Nassiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J.Z., Nassiri, F., Aldape, K., von Deimling, A., Sahm, F. (2023). The Epigenetic Landscape of Meningiomas. In: Zadeh, G., Goldbrunner, R., Krischek, B., Nassiri, F. (eds) Biological and Clinical Landscape of Meningiomas. Advances in Experimental Medicine and Biology, vol 1416. Springer, Cham. https://doi.org/10.1007/978-3-031-29750-2_13

Download citation

Publish with us

Policies and ethics