Skip to main content

Single-Cell Transcriptomic Profiling of Müller Glia in the rd10 Retina

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

Abstract

Müller glia are the principal macroglia of the retina and support retinal neurons both in health and disease. In retinitis pigmentosa (RP), a highly heterogeneous inherited retinal disorder, the most common form of pathology involves primary rod degeneration, followed by secondary cone death. To investigate Müller glia responses to rod degeneration, we performed droplet-based single-cell RNA sequencing in the rd10 mouse model of RP during primary rod degeneration. We confirmed known MG behavior on gliosis, metabolic, and immune functions. Pde6brd10 Müller glia also exhibited an increased expression of histocompatibility complex members, which might arise from a novel immune function of Müller glia in RP. We also describe a possible decrease in glial lipid biogenesis, which might affect degenerating photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berson EL, Rosner B, Sandberg MA, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122:1306–14.

    Article  CAS  PubMed  Google Scholar 

  2. Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.

    Article  CAS  PubMed  Google Scholar 

  3. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao Z, Lee P, Stafford JM, et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature. 2014;516:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol. 2007;500:222–38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hamano F, Kuribayashi H, Iwagawa T, et al. Mapping membrane lipids in the developing and adult mouse retina under physiological and pathological conditions using mass spectrometry. J Biol Chem. 2021;296:100303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    Article  CAS  PubMed  Google Scholar 

  8. Heng JS, Hackett SF, Stein-O’Brien GL, et al. Comprehensive analysis of a mouse model of spontaneous uveoretinitis using single-cell RNA sequencing. Proc Natl Acad Sci U S A. 2019;116:26734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 2020; https://doi.org/10.1126/science.abb8598.

  10. Huang J, Possin DE, Saari JC. Localizations of visual cycle components in retinal pigment epithelium. Mol Vis. 2009;15:223–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ilicic T, Kim JK, Kolodziejczyk AA, et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joly S, Lange C, Thiersch M, et al. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci. 2008;28:13765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joly S, Pernet V, Samardzija M, Grimm C. Pax6-positive Müller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia. 2011;59:1033–46.

    Article  PubMed  Google Scholar 

  14. Lorenz L, Hirmer S, Schmalen A, et al. Cell surface profiling of retinal Müller glial cells reveals association to immune pathways after LPS stimulation. Cell. 2021;10 https://doi.org/10.3390/cells10030711.

  15. Newton F, Megaw R. Mechanisms of photoreceptor death in retinitis pigmentosa. Genes. 2020;11 https://doi.org/10.3390/genes11101120.

  16. Noailles A, Maneu V, Campello L, et al. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep. 2016;6:33356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Otake H, Yamamoto T, Deguchi S, et al. Retinal proteomic evaluation of rats following streptozotocin-injection using shotgun proteomics. Mol Med Rep. 2020;21:379–86.

    CAS  PubMed  Google Scholar 

  18. Phillips MJ, Otteson DC, Sherry DM. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071–89.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Politi L, Rotstein N, Carri N. Effects of docosahexaenoic acid on retinal development: cellular and molecular aspects. Lipids. 2001;36:927–35.

    Article  CAS  PubMed  Google Scholar 

  20. Roesch K, Jadhav AP, Trimarchi JM, et al. The transcriptome of retinal Müller glial cells. J Comp Neurol. 2008;509:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roesch K, Stadler MB, Cepko CL. Gene expression changes within Müller glial cells in retinitis pigmentosa. Mol Vis. 2012;18:1197–214.

    PubMed  PubMed Central  Google Scholar 

  22. Todd L, Palazzo I, Suarez L, et al. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation. 2019;16:118.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ueki Y, Le Y-Z, Chollangi S, et al. Preconditioning-induced protection of photoreceptors requires activation of the signal-transducing receptor gp130 in photoreceptors. Proc Natl Acad Sci U S A. 2009;106:21389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta. 2013;1831:543–54.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J-S, Kefalov VJ. The cone-specific visual cycle. Prog Retin Eye Res. 2011;30:115–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Functional Genomics Center Zürich for their excellent guidance and assistance with scRNAseq. This study was supported by the Swiss National Science Foundation (grant nr. 31003A_173008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Sigurdsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sigurdsson, D., Grimm, C. (2023). Single-Cell Transcriptomic Profiling of Müller Glia in the rd10 Retina. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_55

Download citation

Publish with us

Policies and ethics