Skip to main content

CD68: Potential Contributor to Inflammation and RPE Cell Dystrophy

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

Abstract

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly in developed countries. It is a complex, multifactorial, progressive disease with diverse molecular pathways, including inflammation, regulating its pathogenesis. The myeloid marker CD68 is a protein highly expressed in circulating and tissue macrophages. Recent observations of immune markers in human AMD tissues have varied with some finding ectopic RPE cells in advanced AMD and others noting negligible numbers of CD68-positive cells. Additionally, animal models of retinal degeneration have shown upregulation of CD68, in a protective population of retinal microglia. Herein, we review the potential role of CD68 in regulating RPE health and inflammation in the sub-retinal space and discuss observations on its localization in a mouse model that presents with AMD-like features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.

    Article  PubMed  Google Scholar 

  2. Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, et al. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res. 2020;78:100846.

    Article  Google Scholar 

  4. Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol. 2013;13(6):438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, et al. Abundant lipid and protein components of drusen. PLoS One. 2010;5(4):e10329.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Curcio CA, Johnson M, Rudolf M, Huang JD. The oil spill in ageing Bruch membrane. Br J Ophthalmol. 2011;95(12):1638–45.

    Article  PubMed  Google Scholar 

  7. Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res. 2009;28(6):393–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): an update. Prog Retin Eye Res. 2021;88:101013.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, et al. CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest. 2015;125(2):727–38.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao D, Leong B, Messinger JD, Kar D, Ach T, Yannuzzi LA, et al. Hyperreflective foci, optical coherence tomography progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2021;62(10):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993;81(6):1607–13.

    Article  CAS  PubMed  Google Scholar 

  12. Holness CL, da Silva RP, Fawcett J, Gordon S, Simmons DL. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem. 1993;268(13):9661–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Investig. 2017;97(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  14. Kurushima H, Ramprasad M, Kondratenko N, Foster DM, Quehenberger O, Steinberg D. Surface expression and rapid internalization of macrosialin (mouse CD68) on elicited mouse peritoneal macrophages. J Leukoc Biol. 2000;67(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  15. van der Kooij MA, von der Mark EM, Kruijt JK, van Velzen A, van Berkel TJ, Morand OH. Human monocyte-derived macrophages express an approximately 120-kD Ox-LDL binding protein with strong identity to CD68. Arterioscler Thromb Vasc Biol. 1997;17(11):3107–16.

    Article  PubMed  Google Scholar 

  16. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1996;93(25):14833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elner SG, Elner VM, Nielsen JC, Torczynski E, Yu R, Franklin WA. CD68 antigen expression by human retinal pigment epithelial cells. Exp Eye Res. 1992;55(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  18. Telegina DV, Kozhevnikova OS, Bayborodin SI, Kolosova NG. Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats. Sci Rep. 2017;7:41533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gehrs KM, Heriot WJ, de Juan E Jr. Transmission electron microscopic study of a subretinal choroidal neovascular membrane due to age-related macular degeneration. Arch Ophthalmol. 1992;110(6):833–7.

    Article  CAS  PubMed  Google Scholar 

  20. Seregard S, Algvere PV, Berglin L. Immunohistochemical characterization of surgically removed subfoveal fibrovascular membranes. Graefes Arch Clin Exp Ophthalmol. 1994;232(6):325–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lad EM, Cousins SW, Van Arnam JS, Proia AD. Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1941–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ, et al. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med. 2013;5(11):1775–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choudhary M, Safe S, Malek G. Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochim Biophys Acta Mol basis Dis. 2018;1864(5 Pt A):1583–95.

    Article  CAS  PubMed  Google Scholar 

  24. Choudhary M, Kazmin D, Hu P, Thomas RS, McDonnell DP, Malek G. Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways. J Pathol. 2015;235(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  25. Guillonneau X, Eandi CM, Paques M, Sahel JA, Sapieha P, Sennlaub F. On phagocytes and macular degeneration. Prog Retin Eye Res. 2017;61:98–128.

    Article  CAS  PubMed  Google Scholar 

  26. Yu C, Roubeix C, Sennlaub F, Saban DR. Microglia versus monocytes: distinct roles in degenerative diseases of the retina. Trends Neurosci. 2020;43(6):433–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006;103(7):2328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76(4):463–71.

    Article  CAS  PubMed  Google Scholar 

  29. Madigan MC, van den Berg C, Jager MJ, Provis JM. Expression of macrophage markers and C3d in central and peripheral choroid of young, aged and age-related macular degeneration eyes. Clin Exp Ophthalmol. 2013;41:129.

    Google Scholar 

  30. Hu P, Herrmann R, Bednar A, Saloupis P, Dwyer MA, Yang P, et al. Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proc Natl Acad Sci U S A. 2013;110(43):E4069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choudhary M, Ismail EN, Yao PL, Tayyari F, Radu RA, Nusinowitz S, et al. LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight. 2020;5(1):131928.

    Article  PubMed  Google Scholar 

  32. O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019;50(3):723–37 e7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reyes NJ, O’Koren EG, Saban DR. New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol. 2017;17(5):322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Koren EG, Mathew R, Saban DR. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep. 2016;6:20636.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NEI grants: EY027802 (GM), EY028160 (GM), EY032751 (GM), and EY005722 (Duke Eye Center) and Research to Prevent Blindness core grant (Duke Eye Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goldis Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhary, M., Malek, G. (2023). CD68: Potential Contributor to Inflammation and RPE Cell Dystrophy. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_30

Download citation

Publish with us

Policies and ethics