Skip to main content

Interactive Robot Learning: An Overview

  • Chapter
  • First Online:
Human-Centered Artificial Intelligence (ACAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13500))

Included in the following conference series:

Abstract

How do people teach robots tasks? Here, we focus on main methods and models enabling humans to teach embodied social agents such as social robots, using natural interaction. Humans guide the learning process of such agents by providing various teaching signals, which could take the form of feedback, demonstrations and instructions. This overview describes how human teaching strategies are incorporated within machine learning models. We detail the approaches by providing definitions, technical descriptions, examples and discussions on limitations. We also address natural human biases during teaching. We then present applications such as interactive task learning, robot behavior learning and socially assistive robotics. Finally, we discuss research opportunities and challenges of interactive robot learning.

This work has received funding from European Union’s Horizon 2020 ICT-48 research and innovation actions under grant agreement No 952026 (HumanE-AI-Net) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 765955 (ANIMATAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigrain, J., Spodenkiewicz, M., Dubuisson, S., Detyniecki, M., Cohen, D., Chetouani, M.: Multimodal stress detection from multiple assessments. IEEE Trans. Affect. Comput. 9(4), 491–506 (2018). https://doi.org/10.1109/TAFFC.2016.2631594

    Article  Google Scholar 

  2. Akakzia, A., Colas, C., Oudeyer, P., Chetouani, M., Sigaud, O.: Grounding language to autonomously-acquired skills via goal generation. In: Ninth International Conference on Learning Representation, ICLR 2021, Vienna/Virtual, Austria (2021)

    Google Scholar 

  3. Akinola, I., et al.: Accelerated robot learning via human brain signals. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3799–3805 (2020). https://doi.org/10.1109/ICRA40945.2020.9196566

  4. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014). https://doi.org/10.1609/aimag.v35i4.2513

    Article  Google Scholar 

  5. Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. Int. J. Soc. Robot. 7(4), 465–478 (2015)

    Article  Google Scholar 

  6. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009). https://doi.org/10.1016/j.robot.2008.10.024

    Article  Google Scholar 

  7. Belkaid, M., Kompatsiari, K., Tommaso, D.D., Zablith, I., Wykowska, A.: Mutual gaze with a robot affects human neural activity and delays decision-making processes. Sci. Robot. 6(58), eabc5044 (2021). https://doi.org/10.1126/scirobotics.abc5044

  8. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 41–48. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1553374.1553380

  9. Bobu, A., Scobee, D.R.R., Fisac, J.F., Sastry, S.S., Dragan, A.D.: Less is more: rethinking probabilistic models of human behavior. In: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2020, pp. 429–437. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3319502.3374811

  10. Boucenna, S., Cohen, D., Meltzoff, A.N., Gaussier, P., Chetouani, M.: Robots learn to recognize individuals from imitative encounters with people and avatars. Scientific Reports (Nature Publishing Group) srep19908 (2016)

    Google Scholar 

  11. Boucenna, S., Anzalone, S., Tilmont, E., Cohen, D., Chetouani, M.: Learning of social signatures through imitation game between a robot and a human partner. IEEE Trans. Auton. Ment. Dev. 6(3), 213–225 (2014). https://doi.org/10.1109/TAMD.2014.2319861

    Article  Google Scholar 

  12. Branavan, S.R.K., Chen, H., Zettlemoyer, L.S., Barzilay, R.: Reinforcement learning for mapping instructions to actions. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ACL 2009, Stroudsburg, PA, USA, vol. 1, pp. 82–90. Association for Computational Linguistics (2009)

    Google Scholar 

  13. Bratman, M.E.: Intention and personal policies. Philos. Perspect. 3, 443–469 (1989)

    Article  Google Scholar 

  14. Breazeal, C., Thomaz, A.L.: Learning from human teachers with socially guided exploration. In: 2008 IEEE International Conference on Robotics and Automation, pp. 3539–3544 (2008). https://doi.org/10.1109/ROBOT.2008.4543752

  15. Broekens, J.: Emotion and reinforcement: affective facial expressions facilitate robot learning. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) Artifical Intelligence for Human Computing. LNCS (LNAI), vol. 4451, pp. 113–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72348-6_6

    Chapter  Google Scholar 

  16. Broekens, J., Chetouani, M.: Towards transparent robot learning through TDRL-based emotional expressions. IEEE Trans. Affect. Comput. 12(2), 352–362 (2021). https://doi.org/10.1109/TAFFC.2019.2893348

    Article  Google Scholar 

  17. Cakmak, M., Thomaz, A.L.: Designing robot learners that ask good questions. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 17–24 (2012). https://doi.org/10.1145/2157689.2157693

  18. Caselles-Dupré, H., Sigaud, O., Chetouani, M.: Pragmatically learning from pedagogical demonstrations in multi-goal environments (2022). https://doi.org/10.48550/arxiv.2206.04546

  19. Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D.E., Kambhampati, S.: Explicability? legibility? predictability? transparency? privacy? security? the emerging landscape of interpretable agent behavior. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 29, no. 1, pp. 86–96 (2018)

    Google Scholar 

  20. Chao, C., Cakmak, M., Thomaz, A.L.: Transparent active learning for robots. In: 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 317–324 (2010). https://doi.org/10.1109/HRI.2010.5453178

  21. Chernova, S., Thomaz, A.L.: Robot learning from human teachers. Synthesis Lect. Artif. Intelligence Mach. Learn. 8(3), 1–121 (2014)

    Article  Google Scholar 

  22. Colas, C., et al.: Language as a cognitive tool to imagine goals in curiosity-driven exploration. arXiv preprint arXiv:2002.09253 (2020)

  23. Colombetti, M., Dorigo, M., Borghi, G.: Behavior analysis and training-a methodology for behavior engineering. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(3), 365–380 (1996). https://doi.org/10.1109/3477.499789

    Article  Google Scholar 

  24. Cruz, C.A., Igarashi, T.: A survey on interactive reinforcement learning: design principles and open challenges. In: Proceedings of the 2020 ACM Designing Interactive Systems Conference (2020)

    Google Scholar 

  25. Cruz, F., Twiefel, J., Magg, S., Weber, C., Wermter, S.: Interactive reinforcement learning through speech guidance in a domestic scenario. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.7280477

  26. Csibra, G., Gergely, G.: Natural pedagogy. Trends Cogn. Sci. 13, 148–153 (2009)

    Article  Google Scholar 

  27. Dominey, P., Mallet, A., Yoshida, E.: Real-time spoken-language programming for cooperative interaction with a humanoid apprentice. Int. J. Humanoid Robot. 6, 147–171 (2009). https://doi.org/10.1142/S0219843609001711

    Article  Google Scholar 

  28. Dragan, A.D., Lee, K.C., Srinivasa, S.S.: Legibility and predictability of robot motion. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 301–308. IEEE (2013). https://doi.org/10.1109/HRI.2013.6483603

  29. Duquette, A., Michaud, F., Mercier, H.: Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Auton. Robot. 24(2), 147–157 (2008)

    Article  Google Scholar 

  30. Floridi, L., et al.: AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Mind. Mach. 28(4), 689–707 (2018). https://doi.org/10.1007/s11023-018-9482-5

    Article  Google Scholar 

  31. Fournier, P., Sigaud, O., Chetouani, M.: Combining artificial curiosity and tutor guidance for environment exploration. In: Workshop on Behavior Adaptation, Interaction and Learning for Assistive Robotics at IEEE RO-MAN 2017, Lisbon, Portugal (2017). https://hal.archives-ouvertes.fr/hal-01581363

  32. Fujimoto, I., Matsumoto, T., De Silva, P.R.S., Kobayashi, M., Higashi, M.: Mimicking and evaluating human motion to improve the imitation skill of children with autism through a robot. Int. J. Soc. Robot. 3(4), 349–357 (2011)

    Article  Google Scholar 

  33. Gargot, T., et al.: “It is not the robot who learns, it is me” treating severe dysgraphia using child-robot interaction. Front. Psychiatry 12 (2021). https://doi.org/10.3389/fpsyt.2021.596055

  34. Goodman, N.D., Frank, M.C.: Pragmatic language interpretation as probabilistic inference. Trends Cogn. Sci. 20(11), 818–829 (2016). https://doi.org/10.1016/j.tics.2016.08.005

    Article  Google Scholar 

  35. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics: Speech Acts, vol. 3, pp. 41–58. Academic Press, New York (1975)

    Google Scholar 

  36. Griffith, S., Subramanian, K., Scholz, J., Isbell, C.L., Thomaz, A.: Policy Shaping: integrating human feedback with reinforcement learning. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, pp. 2625–2633. Curran Associates Inc. (2013)

    Google Scholar 

  37. Grizou, J., Iturrate, I., Montesano, L., Oudeyer, P.Y., Lopes, M.: Interactive learning from unlabeled instructions. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014, Arlington, Virginia, USA, pp. 290–299. AUAI Press (2014)

    Google Scholar 

  38. Gweon, H.: Inferential social learning: cognitive foundations of human social learning and teaching. Trends Cogn. Sci. (2021)

    Google Scholar 

  39. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  40. Ho, M., Griffiths, T.: Cognitive science as a source of forward and inverse models of human decisions for robotics and control. Ann. Rev. Control Robot. Auton. Syst. 5, 33–53 (2022). https://doi.org/10.1146/annurev-control-042920-015547

    Article  Google Scholar 

  41. Ho, M.K., Cushman, F., Littman, M.L., Austerweil, J.L.: Communication in action: planning and interpreting communicative demonstrations (2019)

    Google Scholar 

  42. Ho, M.K., Littman, M.L., Cushman, F., Austerweil, J.L.: Teaching with rewards and punishments: reinforcement or communication? In: Proceedings of the 37th Annual Meeting of the Cognitive Science Society (2015)

    Google Scholar 

  43. Ho, M.K., MacGlashan, J., Littman, M.L., Cushman, F.: Social is special: a normative framework for teaching with and learning from evaluative feedback. Cognition 167, 91–106 (2017)

    Article  Google Scholar 

  44. Jacq, A.D., Magnan, J., Ferreira, M.J., Dillenbourg, P., Paiva, A.: Sensitivity to perceived mutual understanding in human-robot collaborations. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Richland, SC, pp. 2233–2235. International Foundation for Autonomous Agents and Multiagent Systems (2018)

    Google Scholar 

  45. Jeon, H.J., Milli, S., Dragan, A.: Reward-rational (implicit) choice: a unifying formalism for reward learning. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS 2020. Curran Associates Inc., Red Hook (2020)

    Google Scholar 

  46. Khan, F., Zhu, X., Mutlu, B.: How do humans teach: on curriculum learning and teaching dimension. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS 2011, pp. 1449–1457. Curran Associates Inc., Red Hook (2011)

    Google Scholar 

  47. Knox, W.B., Stone, P.: Reinforcement learning from human reward: discounting in episodic tasks. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 878–885 (2012). https://doi.org/10.1109/ROMAN.2012.6343862

  48. Knox, W.B., Breazeal, C., Stone, P.: Learning from feedback on actions past and intended. In: In Proceedings of 7th ACM/IEEE International Conference on Human-Robot Interaction, Late-Breaking Reports Session (HRI 2012) (2012)

    Google Scholar 

  49. Knox, W.B., Stone, P.: Interactively shaping agents via human reinforcement: the TAMER framework. In: Proceedings of the Fifth International Conference on Knowledge Capture, K-CAP 2009, pp. 9–16. ACM, New York (2009). https://doi.org/10.1145/1597735.1597738

  50. Knox, W.B., Stone, P.: Combining manual feedback with subsequent MDP reward signals for reinforcement learning. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, Richland, SC, vol. 1, pp. 5–12. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  51. Knox, W.B., Stone, P., Breazeal, C.: Training a robot via human feedback: a case study. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds.) ICSR 2013. LNCS (LNAI), vol. 8239, pp. 460–470. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02675-6_46

    Chapter  Google Scholar 

  52. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Rob. Res. 32(11), 1238–1274 (2013). https://doi.org/10.1177/0278364913495721

    Article  Google Scholar 

  53. Krening, S., Harrison, B., Feigh, K.M., Isbell, C.L., Riedl, M., Thomaz, A.: Learning from explanations using sentiment and advice in RL. IEEE Trans. Cogn. Dev. Syst. 9(1), 44–55 (2017). https://doi.org/10.1109/TCDS.2016.2628365

    Article  Google Scholar 

  54. Krening, S., Feigh, K.M.: Interaction algorithm effect on human experience with reinforcement learning. J. Hum.-Robot Interact. 7(2) (2018). https://doi.org/10.1145/3277904

  55. Laidlaw, C., Dragan, A.D.: The Boltzmann policy distribution: accounting for systematic suboptimality in human models. arXiv abs/2204.10759 (2022)

    Google Scholar 

  56. Laird, J.E., et al.: Interactive task learning. IEEE Intell. Syst. 32(4), 6–21 (2017). https://doi.org/10.1109/MIS.2017.3121552

    Article  Google Scholar 

  57. Lepri, B., Oliver, N., Pentland, A.: Ethical machines: the human-centric use of artificial intelligence. iScience 24(3), 102249 (2021). https://doi.org/10.1016/j.isci.2021.102249

    Article  Google Scholar 

  58. Lin, J., Fried, D., Klein, D., Dragan, A.: Inferring rewards from language in context (2022). https://doi.org/10.48550/arxiv.2204.02515

  59. Luce, R.D.: The choice axiom after twenty years. J. Math. Psychol. 15, 215–233 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  60. Luketina, J., et al.: A survey of reinforcement learning informed by natural language. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 6309–6317. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/880

  61. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connect. Sci. 15(4), 151–190 (2003). https://doi.org/10.1080/09540090310001655110

    Article  Google Scholar 

  62. MacGlashan, J., et al.: Interactive learning from policy-dependent human feedback. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2285–2294. JMLR. org (2017)

    Google Scholar 

  63. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language commands to a robot control system. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, pp. 403–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00065-7_28

    Chapter  Google Scholar 

  64. Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., Hagita, N.: Robot behavior adaptation for human-robot interaction based on policy gradient reinforcement learning. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 218–225 (2005). https://doi.org/10.1109/IROS.2005.1545206

  65. Moerland, T.M., Broekens, J., Jonker, C.M.: Emotion in reinforcement learning agents and robots: a survey. Mach. Learn. 107(2), 443–480 (2017). https://doi.org/10.1007/s10994-017-5666-0

    Article  MathSciNet  Google Scholar 

  66. Najar, A.: Shaping robot behaviour with unlabeled human instructions. Ph.D. thesis, Paris 6 (2017)

    Google Scholar 

  67. Najar, A., Chetouani, M.: Reinforcement learning with human advice. a survey. arXiv preprint arXiv:2005.11016 (2020)

  68. Najar, A., Chetouani, M.: Reinforcement learning with human advice: a survey. Front. Robot. AI (2021). https://doi.org/10.3389/frobt.2021.584075

  69. Najar, A., Sigaud, O., Chetouani, M.: Interactively shaping robot behaviour with unlabeled human instructions. Auton. Agent. Multi-Agent Syst. 34(2), 1–35 (2020). https://doi.org/10.1007/s10458-020-09459-6

    Article  Google Scholar 

  70. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, San Francisco, CA, USA, pp. 663–670. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  71. Nguyen, K., Misra, D., Schapire, R.E., Dudak, M., Shafto, P.: Interactive learning from activity description. In: 2021 International Conference on Machine Learning (2021)

    Google Scholar 

  72. Nicolescu, M.N., Mataric, M.J.: Natural methods for robot task learning: instructive demonstrations, generalization and practice. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2003, pp. 241–248. ACM (2003). https://doi.org/10.1145/860575.860614

  73. Oertel, C., et al.: Engagement in human-agent interaction: an overview. Front. Robot. AI 7, 92 (2020). https://doi.org/10.3389/frobt.2020.00092

    Article  Google Scholar 

  74. Olson, M.L., Khanna, R., Neal, L., Li, F., Wong, W.K.: Counterfactual state explanations for reinforcement learning agents via generative deep learning. Artif. Intell. 295, 103455 (2021). https://doi.org/10.1016/j.artint.2021.103455

    Article  MathSciNet  MATH  Google Scholar 

  75. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J.: An algorithmic perspective on imitation learning. Found. Trends Robot. 7(1–2), 1–179 (2018). https://doi.org/10.1561/2300000053

    Article  Google Scholar 

  76. Paléologue, V., Martin, J., Pandey, A.K., Chetouani, M.: Semantic-based interaction for teaching robot behavior compositions using spoken language. In: Ge, S.S., et al. (eds.) ICSR 2018. LNCS (LNAI), vol. 11357, pp. 421–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05204-1_41

    Chapter  Google Scholar 

  77. Poole, B., Lee, M.: Towards intrinsic interactive reinforcement learning (2021). https://doi.org/10.48550/ARXIV.2112.01575

  78. Pradyot, K.V.N., Manimaran, S.S., Ravindran, B., Natarajan, S.: Integrating human instructions and reinforcement learners: an SRL approach. In: Proceedings of the UAI Workshop on Statistical Relational AI (2012)

    Google Scholar 

  79. Ramírez, O.A.I., Khambhaita, H., Chatila, R., Chetouani, M., Alami, R.: Robots learning how and where to approach people. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 347–353 (2016). https://doi.org/10.1109/ROMAN.2016.7745154

  80. Ravichandar, H., Polydoros, A.S., Chernova, S., Billard, A.: Recent advances in robot learning from demonstration. Ann. Rev. Control Robot. Auton. Syst. 3(1), 297–330 (2020). https://doi.org/10.1146/annurev-control-100819-063206

    Article  Google Scholar 

  81. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, Chia Laguna Resort, Sardinia, Italy, vol. 9, pp. 661–668. PMLR (2010)

    Google Scholar 

  82. Rybski, P.E., Yoon, K., Stolarz, J., Veloso, M.M.: Interactive robot task training through dialog and demonstration. In: 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 49–56 (2007). https://doi.org/10.1145/1228716.1228724

  83. Saint-Georges, C., et al.: Motherese in interaction: at the cross-road of emotion and cognition? (a systematic review). PLOS ONE 8(10) (2013). https://doi.org/10.1371/journal.pone.0078103

  84. Scheutz, M.: The case for explicit ethical agents. AI Mag. 38(4), 57–64 (2017). https://doi.org/10.1609/aimag.v38i4.2746

    Article  Google Scholar 

  85. Sigaud, O., Caselles-Dupré, H., Colas, C., Akakzia, A., Oudeyer, P., Chetouani, M.: Towards teachable autonomous agents. CoRR abs/2105.11977 (2021). arxiv.org/abs/2105.11977

  86. Sumers, T.R., Ho, M.K., Griffiths, T.L.: Show or tell? Demonstration is more robust to changes in shared perception than explanation (2020). https://doi.org/10.48550/ARXIV.2012.09035. arxiv.org/abs/2012.09035

  87. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  88. Tellex, S., et al.: Approaching the symbol grounding problem with probabilistic graphical models. AI Mag. 32(4), 64–76 (2011). https://doi.org/10.1609/aimag.v32i4.2384

    Article  Google Scholar 

  89. Thomaz, A.L., Breazeal, C.: Asymmetric interpretations of positive and negative human feedback for a social learning agent. In: The 16th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2007, pp. 720–725 (2007). https://doi.org/10.1109/ROMAN.2007.4415180

  90. Thomaz, A.L., Breazeal, C.: Reinforcement learning with human teachers: evidence of feedback and guidance with implications for learning performance. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, Boston, Massachusetts, vol. 1, pp. 1000–1005. AAAI Press (2006)

    Google Scholar 

  91. Thomaz, A.L., Breazeal, C.: Teachable robots: understanding human teaching behavior to build more effective robot learners. Artif. Intell. 172(6), 716–737 (2008). https://doi.org/10.1016/j.artint.2007.09.009

    Article  Google Scholar 

  92. Thomaz, A.L., Cakmak, M.: Learning about objects with human teachers. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, HRI 2009, pp. 15–22. ACM, New York (2009). https://doi.org/10.1145/1514095.1514101

  93. Tulli, S., Melo, F., Paiva, A., Chetouani, M.: Learning from explanations with maximum likelihood inverse reinforcement learning (2022). https://doi.org/10.21203/rs.3.rs-1439366/v1

  94. Vinciarelli, A., et al.: Open challenges in modelling, analysis and synthesis of human behaviour in human–human and human–machine interactions. Cogn. Comput. 7(4), 397–413 (2015). https://doi.org/10.1007/s12559-015-9326-z

    Article  Google Scholar 

  95. Vollmer, A.L., et al.: People modify their tutoring behavior in robot-directed interaction for action learning. In: 2009 IEEE 8th International Conference on Development and Learning, pp. 1–6 (2009). https://doi.org/10.1109/DEVLRN.2009.5175516

  96. Vollmer, A.-L., Schillingmann, L.: On studying human teaching behavior with robots: a review. Rev. Philos. Psychol. 9(4), 863–903 (2017). https://doi.org/10.1007/s13164-017-0353-4

    Article  Google Scholar 

  97. Wallkötter, S., Chetouani, M., Castellano, G.: SLOT-V: supervised learning of observer models for legible robot motion planning in manipulation. In: SLOT-V: Supervised Learning of Observer Models for Legible Robot Motion Planning in Manipulation (2022)

    Google Scholar 

  98. Wallkötter, S., Tulli, S., Castellano, G., Paiva, A., Chetouani, M.: Explainable embodied agents through social cues: a review. ACM Trans. Hum.-Robot Interact. 10(3) (2021). https://doi.org/10.1145/3457188

  99. Warnell, G., Waytowich, N., Lawhern, V., Stone, P.: Deep tamer: interactive agent shaping in high-dimensional state spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018). https://doi.org/10.1609/aaai.v32i1.11485

  100. Zhang, R., Torabi, F., Warnell, G., Stone, P.: Recent advances in leveraging human guidance for sequential decision-making tasks. Auton. Agent. Multi-Agent Syst. 35(2), 1–39 (2021). https://doi.org/10.1007/s10458-021-09514-w

    Article  Google Scholar 

  101. Zhu, X.: Machine teaching: an inverse problem to machine learning and an approach toward optimal education. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1 (2015). https://doi.org/10.1609/aaai.v29i1.9761

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Chetouani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chetouani, M. (2023). Interactive Robot Learning: An Overview. In: Chetouani, M., Dignum, V., Lukowicz, P., Sierra, C. (eds) Human-Centered Artificial Intelligence. ACAI 2021. Lecture Notes in Computer Science(), vol 13500. Springer, Cham. https://doi.org/10.1007/978-3-031-24349-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24349-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24348-6

  • Online ISBN: 978-3-031-24349-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics