Skip to main content

Bioactive Compounds of Pteridophytes

  • Reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Abstract

Pteridophytes are non-flowering plants that are possessing horticultural and medicinal value. Vegetative parts or even entire plants, fiddleheads, and rhizomes of pteridophytes are edible and rich in nutritional composition. They are also possessing plentiful phytochemicals including flavonoids, phenolic acids, lignans, coumarins, chromones, phenylpropanoids, quinones, xanthones, terpenoids, alkaloids, and glycosides. These phytochemicals are demonstrated to have several biological activities including antioxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, and neuroprotective effects. This review presents an overview of nutritional value, and phytochemicals present in pteridophytes. The biological activities of phytochemicals present in pteridophytes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Plant List (2022). http://www.theplantlist.org/browse/P/. Accessed 6 June 2022

  2. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731. https://doi.org/10.2307/25065646

    Article  Google Scholar 

  3. Kawano T (2015) Pteridophytes as active components in gardening, agricultural and horticultural ecosystems in Japan. Adv Hortic Sci 29:41–47

    Google Scholar 

  4. Dvorakova M, Pumprova K, Antonínova Z, Rezek J, Haisel D, Ekrt L, Vanek T, Langhansova L (2021) Nutritional and antioxidant potential of fiddleheads from European ferns. Foods 10:460. https://doi.org/10.3390/foods10020460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Maroyi A (2014) Not just minor wild edible forest products: consumption of pteridophytes in sub-Saharan Africa. J Ethnobiol Ethnomed 10:78. https://doi.org/10.1186/1746-4269-10-78

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yumkham SD, Chakpram L, Salam S, Bhattacharya MK, Singh PK (2017) Edible ferns and fern–allies of North East India: a study on potential wild vegetables. Genet Resour Crop Evol 64:467–477. https://doi.org/10.1007/s10722-016-0372-5

    Article  Google Scholar 

  7. Baskaran X, Geo Vigila A, Zhang S, Feng S, Liao W (2018) A review of the use of pteridophytes for treating human ailments. J Zhejiang Univ-Sci B 19:85–119. https://doi.org/10.1631/jzus.B1600344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Goswami HK, Sen K, Mukhopadhyay R (2016) Pteridophytes: evolutionary boon as medicinal plants. Plant Genetic Resour 14:328–355. https://doi.org/10.1017/S1479262116000290

    Article  CAS  Google Scholar 

  9. Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L, Burlando B, Wang Y, Xiao J, Coutinho HDM (2017) Phytochemicals from fern species: potential for medicine applications. Phytochem Rev 16:379–440. https://doi.org/10.1007/s11101-016-9488-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhu QF, Zhao QS (2019) Chemical constituents and biological activities of lycophytes and ferns. Chin J Nat Med 17:887–891. https://doi.org/10.1016/S1875-5364(19)30108-6

    Article  CAS  PubMed  Google Scholar 

  11. DeLong JM, Hodges DM, Prange R, Forney C, Toivenon P, Bishop MC, Elliot M, Jordan M (2011) The unique fatty acid and antioxidant composition of ostrich fern (Matteuccia struthiopteris) fiddleheads. Can J Plant Sci 91:919–930. https://doi.org/10.4141/cjps2010-042

    Article  CAS  Google Scholar 

  12. Liu Y, Wujisguleng W, Long C (2012) Food uses of ferns in China: a review. Acta Soc Bot Pol 81:263–270

    Article  Google Scholar 

  13. Lee CH, Shin SL (2011) Functional activities of ferns for human health. In: Kumar A, Fernandez H, Revilla MA (eds) Working with ferns. Springer, New York, pp 347–359

    Chapter  Google Scholar 

  14. Madeja J, Harmata K, Kolaczek P, Karpinska-Kolaczek M, Piatek K, Naks P (2009) Bracken [Pteridium aquilinum (L.) (Kuhn)], mistletoe [Viscum album (L.)] and bladder-nut [Staphylea pinnata (L.)] - mysterious plants with unusual applications. Cultural and ethnobotanical studies. In: Morel JP, Mercuri AM (eds) Plants, and culture; seeds of the cultural heritage of Europe. pp 207–215

    Google Scholar 

  15. Bassey ME, Etuk EUI, Ibe MM, Ndon BA (2001) Diplazium sammatii: Athyraceae (‘Nyama idim’): age-related nutritional and antinutritional analysis. Plant Foods Hum Nutr 56:7–12. https://doi.org/10.1023/A:1008185513685

    Article  CAS  PubMed  Google Scholar 

  16. Sareen B, Bhattacharya A, Srivatsan V (2021) Nutritional characterization and chemical composition of Diplazium maximum (D. Don) C. Chr. J Food Sci Technol 58:844–854. https://doi.org/10.1007/s13197-020-04598-w

    Article  CAS  PubMed  Google Scholar 

  17. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x

    Article  PubMed  Google Scholar 

  18. Chettri S, Manivannan S, Muddarsu VR (2018) Nutrient and elemental composition of wild edible ferns of the Himalaya. Am Fern J 108:95–106. https://doi.org/10.1640/0002-8444-108.3.95

    Article  Google Scholar 

  19. Oloyede F, Makinde A, Ajayi O (2012) Proximate analysis, nutritional and anti-nutritional compositions of a tropical fern, Nephrolepis furcans in Nigeria. Acta Bot Hungar 54:345–354. https://doi.org/10.1556/ABot.54.2012.3-4.12

    Article  CAS  Google Scholar 

  20. Oloyede FA, Alafe BB, Oloyede FM (2008) Nutrient evaluation of Nephrolepis biserrata (nephrolepidiaceae, Pteridophyta). Botanica Lithuanica 14:207–210

    Google Scholar 

  21. Lognay G, Haubruge E, Delcarte E, Wathelet B, Mathieu F, Marlier M, Malaisse F (2008) Ophioglossum polyphyllum A. Braun in Seub. (Ophioglossaceae, Pteridophyta), a rare potherb in south central Tibet (T.A.R., P.R. China). Geo-Eco-Trop 32:9–16

    Google Scholar 

  22. Longvah T, Ananthan R, Bhaskaracharya K, Venkaiah K (2017) Indian food composition tables. National Institute of Nutrition, Hyderabad

    Google Scholar 

  23. Ayer WA, Trifonov LS (1994) Lycopodium alkaloids. In: Cordell GA, Brossi A (eds) The alkaloids: chemistry and pharmacology. Academic Press, San Diego, pp 233–266

    Google Scholar 

  24. Hirasawa Y, Morita H, Kobayashi J (2004) Nankakurine A, a Novel C16N2 -type alkaloid from Lycopodium hamiltonii. Org Lett 6:3389–3391. https://doi.org/10.1021/ol048621a

    Article  CAS  PubMed  Google Scholar 

  25. Ayer WA, Altenkirk B, Valverde-Lopez S, Douglas B, Raffaus RF, Weisbach JA (1968) The alkaloids of Lycopodium alopecuroides L. Can J Chem 46:15–20

    Article  CAS  Google Scholar 

  26. Burnell RH, Mootoo BS (1961) Lycopodium alkalloids. Part IV. Alkaloids of jamaican Lycopodium clavatum Linn. Can J Chem 39:1090–1093

    Article  CAS  Google Scholar 

  27. Castillo M, Loyola LA, Morales G, Singh I, Calvo C, Holland HL, Maclean DB (1976) The alkaloids of L. magellanicum and the structure of magellanine. Can J Chem 54:2893–2899

    Article  CAS  Google Scholar 

  28. Castillo M, Morales G, Loyola LA, Singh I, Calvo C, Holland HL, MacLean DB (1976) The alkaloids of L. paniculatum and the structure of paniculatine. Canadian J Chem 54:2900–2908

    Article  CAS  Google Scholar 

  29. Chen Y, He H-W, Mei Z-N, Yang GZ (2014) Lycopodium alkaloids from Lycopodium obscurum L. Helv Chim Acta 97:519–523. https://doi.org/10.1002/hlca.201300243

    Article  CAS  Google Scholar 

  30. He J, Chen XQ, Li MM, Zhao Y, Xu G, Cheng X, Peng LY, Xie MJ, Zheng YT, Wang YP, Zhao QS (2009) Lycojapodine A, a novel alkaloid from Lycopodium japonicum. Org Lett 11:1397–1400. https://doi.org/10.1021/ol900079t

    Article  CAS  PubMed  Google Scholar 

  31. Inubushi Y, Tsuda Y, Sano T (1962) Studies on the constituents of domestic Lycopodium genus plants. I. Yakugaku Zasshi 82:1537–1541. https://doi.org/10.1248/yakushi1947.82.11_1537

    Article  CAS  PubMed  Google Scholar 

  32. Ishiuchi K, Jiang WP, Fujiwara Y, Wu JB, Kitanaka S (2016) Serralongamines B–D, three new Lycopodium alkaloids from Lycopodium serratum var. longipetiolatum , and their inhibitory effects on foam cell formation in macrophages. Bioorg Med Chem Lett 26:2636–2640. https://doi.org/10.1016/j.bmcl.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  33. Jiang WW, Liu YC, Zhang ZJ, Liu YC, He J, Su J, Cheng X, Peng LY, Shao L-D, Wu XD, Yang J-H, Zhao QS (2016) Obscurumines HP, new Lycopodium alkaloids from the club moss Lycopodium obscurum. Fitoterapia 109:155–161. https://doi.org/10.1016/j.fitote.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  34. Johns SR, Lamberton JA, Sioumis AA (1969) Alkaloids of Lycopodium volubile (Lycopodiaceae). Aust J Chem 22:1317–1317

    Article  CAS  Google Scholar 

  35. Loyola LA, Morales G, Castillo M (1979) Alkaloids of Lycopodium magellanicum. Phytochemistry 18:1721–1723. https://doi.org/10.1016/0031-9422(79)80193-4

    Article  CAS  Google Scholar 

  36. Mandal SK, Biswas R, Bhattacharyya SS, Paul S, Dutta S, Pathak S, Khuda-Bukhsh AR (2010) Lycopodine from Lycopodium clavatum extract inhibits proliferation of HeLa cells through induction of apoptosis via caspase-3 activation. Eur J Pharmacol 626:115–122. https://doi.org/10.1016/j.ejphar.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  37. Manske RHF (1953) The alkaloids of Lycopodium species. XII. Lycopodium densum. Canadian J Chem 31:894–895

    Article  CAS  Google Scholar 

  38. Miller N, Mees F, Braekman JC (1971) Alcaloïdes de Lycopodium alpinum. Phytochemistry 10:1931–1934. https://doi.org/10.1016/S0031-9422(00)86462-6

    Article  CAS  Google Scholar 

  39. Takayama H, Katakawa K, Kitajima M, Yamaguchi K, Aimi N (2003) Ten new Lycopodium alkaloids having the lycopodane skeleton isolated from Lycopodium serratum THUNB. Chem Pharm Bull 51:1163–1169. https://doi.org/10.1248/cpb.51.1163

    Article  CAS  Google Scholar 

  40. Wang XJ, Li L, Si YK, Yu SS, Ma SG, Bao XQ, Zhang D, Qu J, Liu YB, Li Y (2013) Nine new lycopodine-type alkaloids from Lycopodium japonicum Thunb. Tetrahedron 69:6234–6240. https://doi.org/10.1016/j.tet.2013.05.028

    Article  CAS  Google Scholar 

  41. Wang LJ, Xiong J, Wang W, Zhang HY, Yang GX, Hu JF (2016) Lycopodium alkaloids from Lycopodium obscurum L. f. strictum. Phytochem Lett 15:260–264. https://doi.org/10.1016/j.phytol.2016.02.001

    Article  CAS  Google Scholar 

  42. Yang Q, Zhu Y, Peng W, Zhan R, Chen Y (2016) A New Lycopodine-type alkaloid from Lycopodium japonicum. Nat Prod Res 30:2220–2224. https://doi.org/10.1080/14786419.2016.1146885

    Article  CAS  PubMed  Google Scholar 

  43. Zhang XY, Dong LB, Liu F, Wu XD, He J, Peng LY, Luo HR, Zhao QS (2013) New Lycopodium alkaloids from Lycopodium obscurum. Nat Products Bioprospect 3:52–55. https://doi.org/10.1007/s13659-013-0015-x

    Article  CAS  Google Scholar 

  44. Zhu Y, Dong LB, Zhang ZJ, Fan M, Zhu QF, Qi YY, Liu YC, Peng LY, Wu XD, Zhao QS (2019) Three new Lycopodium alkaloids from Lycopodium japonicum. J Asian Nat Prod Res 21:17–24. https://doi.org/10.1080/10286020.2018.1427075

    Article  CAS  PubMed  Google Scholar 

  45. Hirasawa Y, Tanaka T, Kobayashi J, Kawahara N, Goda Y, Morita H (2008) Malycorins A-C, new Lycopodium alkaloids from Lycopodium phlegmaria. Chem Pharm Bull 56:1473–1476. https://doi.org/10.1248/cpb.56.1473

    Article  CAS  Google Scholar 

  46. Ayer WA, Browne LM, Orszanska H, Valenta Z, Liu JS (1989) Alkaloids of Lycopodium selago. On the identity of selagine with huperzine A and the structure of a related alkaloid. Can J Chem 67:1538–1540

    Article  CAS  Google Scholar 

  47. Wang B, Guan C, Fu Q (2022) The traditional uses, secondary metabolites, and pharmacology of Lycopodium species. Phytochem Rev 21:1–79. https://doi.org/10.1007/s11101-021-09746-4

    Article  CAS  Google Scholar 

  48. Ham YM, Yoon WJ, Park SY, Jung YH, Kim D, Jeon YJ, Wijesinghe WAJP, Kang SM, Kim KN (2012) Investigation of the component of Lycopodium serratum extract that inhibits proliferation and mediates apoptosis of human HL-60 leukemia cells. Food Chem Toxicol 50:2629–2634. https://doi.org/10.1016/j.fct.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2002) Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. J Nat Prod 65:979–985. https://doi.org/10.1021/np0200616

    Article  CAS  PubMed  Google Scholar 

  50. Yang Q, Zhu Y, Zhan R, Chen Y (2018) A new Fawcettimine-related alkaloid from Lycopodium japonicum. Chem Nat Compd 54:729–731. https://doi.org/10.1007/s10600-018-2456-2

    Article  CAS  Google Scholar 

  51. Yin S, Fan CQ, Wang XN, Yue JM (2006) Lycodine type alkaloids from Lycopodium casuarinoides. Helv Chim Acta 89:138–143. https://doi.org/10.1002/hlca.200690006

    Article  CAS  Google Scholar 

  52. Pan K, Luo JG, Kong LY (2013) Two new Lycopodium alkaloids from Lycopodium obscurum. Helv Chim Acta 96:1197–1201. https://doi.org/10.1002/hlca.201200505

    Article  CAS  Google Scholar 

  53. Pongpamorn P, Wan-erlor S, Ruchirawat S, Thasana N (2016) Lycoclavatumide and 8β,11α-dihydroxylycopodine, a new fawcettimine and lycopodine-type alkaloid from Lycopodium clavatum. Tetrahedron 72:7065–7069. https://doi.org/10.1016/j.tet.2016.09.046

    Article  CAS  Google Scholar 

  54. Ayer WA, Altenkirk B, Masaki N, Valverde-Lopez S (1969) Alkaloids of Lycopodiurn alopecuroides. Part 2. Alopecurine, a new type of lycopodium alkaloid. Can J Chem 47:2449–2455

    Article  CAS  Google Scholar 

  55. Ayer WA, Law DA (1962) Lycopodium alkaloids. IV. The constituents and stereochemistry of lycoclavine, an alkaloid of Lycopodium clavatum var. megastachyon. Can J Chem 40:2088–2100

    Article  CAS  Google Scholar 

  56. Morales G, Loyola LA, Castillo M (1979) Alkaloids of Lycopodium paniculatum: the structure of paniculine. Phytochemistry 18:1719–1720. https://doi.org/10.1016/0031-9422(79)80192-2

    Article  CAS  Google Scholar 

  57. Morita H, Hirasawa Y, Kobayashi J (2005) Lycopodatines A−C, C16N alkaloids from Lycopodium inundatum. J Nat Prod 68:1809–1812

    Article  CAS  PubMed  Google Scholar 

  58. Anet FAL, Khan NH (1959) Alkaloids of Lycopodium annotinum. Part II. Isolation of four new alkaloids. Can J Chem 37:1589–1596

    Article  CAS  Google Scholar 

  59. Koyama K, Morita H, Hirasawa Y, Yoshinaga M, Hoshino T, Obara Y, Nakahata N, Kobayashi J (2005) Lannotinidines A–G, new alkaloids from two species of Lycopodium. Tetrahedron 61:3681–3690. https://doi.org/10.1016/j.tet.2005.02.016

    Article  CAS  Google Scholar 

  60. Tang Y, Xiong J, Zhang JJ, Wang W, Zhang HY, Hu JF (2016) Annotinolides A–C, Three lycopodane-derived 8,5-lactones with polycyclic skeletons from Lycopodium annotinum. Org Lett 18:4376–4379. https://doi.org/10.1021/acs.orglett.6b02132

    Article  CAS  PubMed  Google Scholar 

  61. Morita H, Ishiuchi K, Haganuma A, Hoshino T, Obara Y, Nakahata N, Kobayashi J (2005) Complanadine B, obscurumines A and B, new alkaloids from two species of Lycopodium. Tetrahedron 61:1955–1960. https://doi.org/10.1016/j.tet.2005.01.011

    Article  CAS  Google Scholar 

  62. Pan K, Luo JG, Kong LY (2013) Three new Lycopodium alkaloids from Lycopodium obscurum. J Asian Nat Prod Res 15:441–445. https://doi.org/10.1080/10286020.2013.780045

    Article  CAS  PubMed  Google Scholar 

  63. Burnell RH, Mootoo BS, Taylor DR (1960) Alkaloids of Lycopodium fawcettii. Part II. Can J Chem 38:1927–1932

    Article  CAS  Google Scholar 

  64. Katakawa K, Kogure N, Kitajima M, Takayama H (2009) A new Lycopodium alkaloid, lycoposerramine-R, with a novel skeleton and three new fawcettimine-related alkaloids from Lycopodium serratum. Helv Chim Acta 92:445–452. https://doi.org/10.1002/hlca.200800327

    Article  CAS  Google Scholar 

  65. Ayer WA, Altenkirk B, Burnell RH, Moinas M (1969) Alkaloids of Lycopodium lucidulum Michx. structure and properties of alkaloid L.23. Can J Chem 47:449–455

    Article  CAS  Google Scholar 

  66. Sun Y, Yan J, Meng H, He CL, Yi P, Qiao Y, Qiu MH (2008) A new alkaloid from Lycopodium japonicum Thunb. Helv Chim Acta 91:2107–2109. https://doi.org/10.1002/hlca.200890225

    Article  CAS  Google Scholar 

  67. Ayer WA, Altenkirk B (1969) Structure of lucidioline. An alkaloid of Lycopodium lucidulum. Can J Chem 47:499–502

    Article  CAS  Google Scholar 

  68. Ayer WA, Iverach GG (1962) The structure and stereochemistry of lycodoline (lycopodium alkaloid L.8). Tetrahedron Lett 3:87–92. https://doi.org/10.1016/S0040-4039(00)71105-1

    Article  Google Scholar 

  69. Hirasawa Y, Morita H, Kobayashi J (2002) Lyconesidines A–C, new alkaloids from Lycopodium chinense. Tetrahedron 58:5483–5488. https://doi.org/10.1016/S0040-4020(02)00520-3

    Article  CAS  Google Scholar 

  70. Morita H, Hirasawa Y, Shinzato T, Kobayashi J (2004) New phlegmarane-type, cernuane-type, and quinolizidine alkaloids from two species of Lycopodium. Tetrahedron 60:7015–7023. https://doi.org/10.1016/j.tet.2003.09.106

    Article  CAS  Google Scholar 

  71. Anet FAL, Haq MZ, Khan NH, Ayer WA, Hayatsu R, Valverde-Lopez S, Deslongchamps P, Riess W, Ternbah M, Valenta Z, Wiesner K (1964) The structure of lyconnotine: a novel lycopodium alkaloid. Tetrahedron Lett 5:751–757. https://doi.org/10.1016/0040-4039(64)83031-8

    Article  Google Scholar 

  72. Ayer WA, Masaki N (1971) Alkaloids of Lycopodium alopecuroides. Part 4. The structure of lycopecurine. Can J Chem 49:524–527

    Article  CAS  Google Scholar 

  73. Zhang ZJ, Zhu QF, Su J, Wu XD, Zhao QS (2018) Lycoplanines B-D, three Lycopodium alkaloids from Lycopodium complanatum. Nat Products Bioprospect 8:177–182. https://doi.org/10.1007/s13659-018-0161-2

    Article  CAS  Google Scholar 

  74. Kogure N, Maruyama M, Wongseripipatana S, Kitajima M, Takayama H (2016) New lycopodine-type alkaloids from Lycopodium carinatum. Chem Pharm Bull 64:793–799. https://doi.org/10.1248/cpb.c16-00171

    Article  CAS  Google Scholar 

  75. Bishayee K, Chakraborty D, Ghosh S, Boujedaini N, Khuda-Bukhsh AR (2013) Lycopodine triggers apoptosis by modulating 5-lipoxygenase, and depolarizing mitochondrial membrane potential in androgen sensitive and refractory prostate cancer cells without modulating p53 activity: signaling cascade and drug–DNA interaction. Eur J Pharmacol 698:110–121. https://doi.org/10.1016/j.ejphar.2012.10.041

    Article  CAS  PubMed  Google Scholar 

  76. Morita H, Arisaka M, Yoshida N, Kobayashi J (2000) Serratezomines A−C, new alkaloids from Lycopodium serratum var. serratum. J Org Chem 65:6241–6245. https://doi.org/10.1021/jo000661e

    Article  CAS  PubMed  Google Scholar 

  77. Kobayashi J, Hirasawa Y, Yoshida N, Morita H (2001) Lyconadin A, a novel alkaloid from Lycopodium complanatum. J Org Chem 66:5901–5904. https://doi.org/10.1021/jo0103874

    Article  CAS  PubMed  Google Scholar 

  78. Choo CY, Hirasawa Y, Karimata C, Koyama K, Sekiguchi M, Kobayashi J, Morita H (2007) Carinatumins A–C, new alkaloids from Lycopodium carinatum inhibiting acetylcholinesterase. Bioorg Med Chem 15:1703–1707. https://doi.org/10.1016/j.bmc.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  79. Liu F, Wu XD, He J, Deng X, Peng LY, Luo HR, Zhao QS (2013) Casuarines A and B, Lycopodium alkaloids from Lycopodium casuarinoides. Tetrahedron Lett 54:4555–4557. https://doi.org/10.1016/j.tetlet.2013.06.083

    Article  CAS  Google Scholar 

  80. Kobayashi J, Hirasawa Y, Yoshida N, Morita H (2000) Complanadine A, a new dimeric alkaloid from Lycopodium complanatum. Tetrahedron Lett 41:9069–9073. https://doi.org/10.1016/S0040-4039(00)01630-0

    Article  CAS  Google Scholar 

  81. Ishiuchi K, Kubota T, Mikami Y, Obara Y, Nakahata N, Kobayashi J (2007) Complanadines C and D, new dimeric alkaloids from Lycopodium complanatum. Bioorg Med Chem 15:413–417. https://doi.org/10.1016/j.bmc.2006.09.043

    Article  CAS  PubMed  Google Scholar 

  82. Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J (2011) Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 19:749–753. https://doi.org/10.1016/j.bmc.2010.12.025

    Article  CAS  PubMed  Google Scholar 

  83. Gerard RV, MacLean DB, Fagiani R, Lock CJ (1986) Fastigiatine, a Lycopodium alkaloid with a new ring system. Can J Chem 64:943–949

    Article  CAS  Google Scholar 

  84. Burnell RH, Chin CG, Mootoo BS, Taylor DR (1963) Lycopodium alkaloids. Part VIII. New alkaloids from Jamaican Lycopodium species. Can J Chem 41:3091–3094

    Article  CAS  Google Scholar 

  85. Morita H, Hirasawa Y, Kobayashi J (2003) Himeradine A, a Novel C27N3-type alkaloid from Lycopodium chinense. J Org Chem 68:4563–4566. https://doi.org/10.1021/jo034294t

    Article  CAS  PubMed  Google Scholar 

  86. Yeap JSY, Lim KH, Yong KT, Lim SH, Kam TS, Low YY (2019) Lycopodium alkaloids: lycoplatyrine A, an unusual lycodine–piperidine adduct from Lycopodium platyrhizoma and the absolute configurations of lycoplanine D and lycogladine H. J Nat Prod 82:324–329. https://doi.org/10.1021/acs.jnatprod.8b00754

    Article  CAS  PubMed  Google Scholar 

  87. Anet FAL, Eves CR (1958) Lycodine, a new alkaloid of Lycopodium annotinum. Can J Chem 36:902–909

    Article  CAS  Google Scholar 

  88. Hirasawa Y, Kato E, Kobayashi J, Kawahara N, Goda Y, Shiro M, Morita H (2008) Lycoparins A–C, new alkaloids from Lycopodium casuarinoides inhibiting acetylcholinesterase. Bioorg Med Chem 16:6167–6171. https://doi.org/10.1016/j.bmc.2008.04.044

    Article  CAS  PubMed  Google Scholar 

  89. Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladines F and G, new C16N2-type alkaloids with an additional C4N unit from Lycopodium complanatum. Tetrahedron Lett 50:4221–4224. https://doi.org/10.1016/j.tetlet.2009.04.139

    Article  CAS  Google Scholar 

  90. Shen YC, Chen CH (1994) Alkaloids from Lycopodium casuarinoides. J Nat Prod 57:824–826. https://doi.org/10.1021/np50108a021

    Article  CAS  PubMed  Google Scholar 

  91. Ayer WA, Habgood TE, Deulofeu V, Juliani HR (1965) Lycopodium alkaloids - Sauroxine. Tetrahedron 21:2169–2172. https://doi.org/10.1016/S0040-4020(01)98352-8

    Article  CAS  PubMed  Google Scholar 

  92. Ayer WA, Berezowsky JA, Iverach GG (1962) Lycopodium alkaloids–II. Tetrahedron 18:567–573. https://doi.org/10.1016/S0040-4020(01)92707-3

    Article  CAS  Google Scholar 

  93. Wang XJ, Li L, Yu SS, Ma SG, Qu J, Liu YB, Li Y, Wang Y, Tang W (2013) Five new fawcettimine-related alkaloids from Lycopodium japonicum Thunb. Fitoterapia 91:74–81. https://doi.org/10.1016/j.fitote.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  94. Katakawa K, Nozoe A, Kogure N, Kitajima M, Hosokawa M, Takayama H (2007) Fawcettimine-related alkaloids from Lycopodium serratum. J Nat Prod 70:1024–1028. https://doi.org/10.1021/np0700568

    Article  CAS  PubMed  Google Scholar 

  95. Katakawa K, Mito H, Kogure N, Kitajima M, Wongseripipatana S, Arisawa M, Takayama H (2011) Ten new fawcettimine-related alkaloids from three species of Lycopodium. Tetrahedron 67:6561–6567. https://doi.org/10.1016/j.tet.2011.05.107

    Article  CAS  Google Scholar 

  96. Ayer WA, Altenkirk B (1969) Alkaloids of Lycopodium alopecuroides. Part 3. Structure of alolycopine. Can J Chem 47:2457–2459

    Article  CAS  Google Scholar 

  97. Zhang ZJ, Qi YY, Wu XD, Su J, Zhao QS (2018) Lycogladines A-H, fawcettimine-type Lycopodium alkaloids from Lycopodium complanatum var. glaucum Ching. Tetrahedron 74:1692–1697. https://doi.org/10.1016/j.tet.2018.02.034

    Article  CAS  Google Scholar 

  98. Wang XJ, Zhang GJ, Zhuang PY, Zhang Y, Yu SS, Bao XQ, Zhang D, Yuan YH, Chen NH, Ma S, Qu J, Li Y (2012) Lycojaponicumins A–C, three alkaloids with an unprecedented skeleton from Lycopodium japonicum. Org Lett 14:2614–2617. https://doi.org/10.1021/ol3009478

    Article  CAS  PubMed  Google Scholar 

  99. Ishiuchi K, Kubota T, Morita H, Kobayashi J (2006) Lycopladine A, a new C16N alkaloid from Lycopodium complanatum. Tetrahedron Lett 47:3287–3289. https://doi.org/10.1016/j.tetlet.2006.03.027

    Article  CAS  Google Scholar 

  100. Ishiuchi K, Kubota T, Hoshino T, Obara Y, Nakahata N, Kobayashi J (2006) Lycopladines B–D and lyconadin B, new alkaloids from Lycopodium complanatum. Bioorg Med Chem 14:5995–6000. https://doi.org/10.1016/j.bmc.2006.05.028

    Article  CAS  PubMed  Google Scholar 

  101. Takayama H, Katakawa K, Kitajima M, Seki H, Yamaguchi K, Aimi N (2001) A new type of Lycopodium alkaloid, lycoposerramine-A, from Lycopodium serratum Thunb. Org Lett 3:4165–4167. https://doi.org/10.1021/ol0167762

    Article  CAS  PubMed  Google Scholar 

  102. Katakawa K, Kitajima M, Aimi N, Seki H, Yamaguchi K, Furihata K, Harayama T, Takayama H (2005) Structure elucidation and synthesis of lycoposerramine-B, a novel oxime-containing Lycopodium alkaloid from Lycopodium serratum Thunb. J Org Chem 70:658–663. https://doi.org/10.1021/jo0483825

    Article  CAS  PubMed  Google Scholar 

  103. Takayama H, Katakawa K, Kitajima M, Yamaguchi K, Aimi N (2002) Seven new Lycopodium alkaloids, lycoposerramines-C, -D, -E, -P, -Q, -S, and -U, from Lycopodium serratum Thunb. Tetrahedron Lett 43:8307–8311. https://doi.org/10.1016/S0040-4039(02)02026-9

    Article  CAS  Google Scholar 

  104. Ayer WA, Ma YT, Liu JS, Huang MF, Schultz LW, Clardy J (1994) Macleanine, a unique type of dinitrogenous Lycopodiurn alkaloid. Can J Chem 72:128–130

    Article  CAS  Google Scholar 

  105. Breakman JC, Hootele C, Miller N, Declercq JP, Germain G, Meerssche MV (1979) Megastachine, a new alkaloid from Lycopodium megastachyum. Can J Chem 57:1691–1693

    Article  Google Scholar 

  106. Hu T, Chandler RF, Hanson AW (1987) Obscurinine: a new lycopodium alkaloid. Tetrahedron Lett 28:5993–5996. https://doi.org/10.1016/S0040-4039(00)96845-X

    Article  CAS  Google Scholar 

  107. Inubushi Y, Tsuda Y, Hasashi I, Sano T, Hosokawa M, Harayama T (1964) Studies on the constituents of domestic Lycopodium genus plants. II. on the constituents of lycopodium serratum Thunb. var. Thunberghii Makino (from Mt. Hira). Yakugaku Zasshi 84:1108–1113

    Article  CAS  PubMed  Google Scholar 

  108. Ayer WA, Jenkins JK, Valverde-Lopez S (1967) The alkaloids of Lycopodium cernuum L. I. The structures of cernuine and lycocernuine. Can J Chem 45:433–443

    Article  Google Scholar 

  109. Ayer WA, Jenkins JK, Piers K, Valverde-Lopez S (1967) The alkaloids of Lycopodium cernuum L. II. The stereochemistry of cernuine and lycocernuine. Can J Chem 45:445–450

    Article  CAS  Google Scholar 

  110. Marion L, Manske RHF (1948) The alkaloids of Lycopodium species. X. Lycopodium cernuum L. Canadian J Res Sec B26:1–2

    Google Scholar 

  111. Morita H, Hirasawa Y, Yoshida N, Kobayashi J (2001) Senepodine A, a novel C22N2 alkaloid from Lycopodium chinense. Tetrahedron Lett 42:4199–4201. https://doi.org/10.1016/S0040-4039(01)00688-8

    Article  CAS  Google Scholar 

  112. Koyama K, Hirasawa Y, Kobayashi J, Morita H (2007) Cryptadines A and B, novel C27N3-type pentacyclic alkaloids from Lycopodium cryptomerinum. Bioorg Med Chem 15:7803–7808. https://doi.org/10.1016/j.bmc.2007.08.043

    Article  CAS  PubMed  Google Scholar 

  113. Ayer WA, Browne LM, Nakahara Y, Tori M, Delbaere LT (1979) A new type of Lycopodium alkaloid. C30N3The alkaloids from Lycopodium lucidulum. Can J Chem 57:1105–1107

    Article  CAS  Google Scholar 

  114. Tori M, Shimoji T, Shimura E, Takaoka S, Nakashima K, Sono M, Ayer WA (2000) Four alkaloids, lucidine B, oxolucidine A, lucidine A, and lucidulinone from Lycopodium lucidulum. Phytochemistry 53:503–509. https://doi.org/10.1016/S0031-9422(99)00592-0

    Article  CAS  PubMed  Google Scholar 

  115. Ayer WA, Masaki N, Nkunika DS (1968) Luciduline: a unique type of Lycopodium alkaloid. Can J Chem 46:3631–3642

    Article  CAS  Google Scholar 

  116. Hirasawa Y, Tanaka T, Koyama K, Morita H (2009) Lycochinines A–C, novel C27N3 alkaloids from Lycopodium chinense. Tetrahedron Lett 50:4816–4819. https://doi.org/10.1016/j.tetlet.2009.05.072

    Article  CAS  Google Scholar 

  117. Hirasawa Y, Kobayashi J, Morita H (2006) Lycoperine A, a novel C27N3-type pentacyclic alkaloid from Lycopodium hamiltonii, inhibiting acetylcholinesterase. Org Lett 8:123–126. https://doi.org/10.1021/ol052760q

    Article  CAS  PubMed  Google Scholar 

  118. Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum. Tetrahedron Lett 50:6534–6536. https://doi.org/10.1016/j.tetlet.2009.09.035

    Article  CAS  Google Scholar 

  119. Shigeyama T, Katakawa K, Kogure N, Kitajima M, Takayama H (2007) Asymmetric total syntheses of two phlegmarine-type alkaloids, lycoposerramines-V and -W, Newly isolated from Lycopodium serratum. Org Lett 9:4069–4072. https://doi.org/10.1021/ol701871v

    Article  CAS  PubMed  Google Scholar 

  120. Katakawa K, Kitajima M, Yamaguchi K, Takayama H (2006) Three new phlegmarine-type lycopodium alkaloids, lycoposerramines-X, -Y, and -Z, having a nitrone residue, from Lycopodium serratum. Heterocycles 69:223–229. https://doi.org/10.3987/COM-06-S(O)16

    Article  CAS  Google Scholar 

  121. Cheng JT, Liu F, Li XN, Wu XD, Dong LB, Peng LY, Huang SX, He J, Zhao QS (2013) Lycospidine A, a new type of lycopodium alkaloid from Lycopodium complanatum. Org Lett 15:2438–2441. https://doi.org/10.1021/ol400907v

    Article  CAS  PubMed  Google Scholar 

  122. Jiang WP, Ishiuchi K, Wu JB, Kitanaka S (2014) Serralongamine A, a new lycopodium alkaloid from Lycopodium serratum var. longipetiolatum. Heterocycles 89:747–752. https://doi.org/10.3987/COM-13-12928

    Article  CAS  Google Scholar 

  123. Kubota T, Yahata H, Yamamoto S, Hayashi S, Shibata T, Kobayashi J (2009) Serratezomines D, and E, new Lycopodium alkaloids from Lycopodium serratum var. serratum. Bioorg Med Chem Lett 19:3577–3580. https://doi.org/10.1016/j.bmcl.2009.04.146

    Article  CAS  PubMed  Google Scholar 

  124. Ayer WA, Ball LF, , Browne LM, Tori M, Delbaere LTJ, Silverberg A (1984) Spirolucidine, a new Lycopodium alkaloid. Can J Chem 62:298–302

    Article  CAS  Google Scholar 

  125. Ansari FR, Ansari WH, Rahman W, Seligmann O, Chari VM, Wagner H, Osterdahl BG (1979) A new acylated apigenin 4′-O-β-D-glucoside from the leaves of Lycopodium clavatum L. J Med Plant Res 36:196–199

    Article  CAS  Google Scholar 

  126. Zhang Y, Yi P, Chen Y, Mei Z, Hu X, Yang G (2014) Lycojaponicuminol A–F: cytotoxic serratene triterpenoids from Lycopodium japonicum. Fitoterapia 96:95–102. https://doi.org/10.1016/j.fitote.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  127. Zhao YH, Deng TZ, Chen Y, Liu XM, Yang GZ (2010) Two new triterpenoids from Lycopodium obscurum L. J Asian Nat Prod Res 12:666–671. https://doi.org/10.1080/10286020.2010.493881

    Article  CAS  PubMed  Google Scholar 

  128. Yan J, Zhang XM, Li ZR, Zhou L, Chen JC, Sun LR, Qiu MH (2005) Three new triterpenoids from Lycopodium japonicum Thunb. Helv Chim Acta 88:240–244. https://doi.org/10.1002/hlca.200590004

    Article  CAS  Google Scholar 

  129. Nguyen VT, Zhao BT, Seong SH, Kim JA, Woo MH, Choi JS, Min BS (2017) Inhibitory effects of serratene-type triterpenoids from Lycopodium complanatum on cholinesterases and β-secretase 1. Chem Biol Interact 274:150–157. https://doi.org/10.1016/j.cbi.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  130. Wang X, Yu D, Yu S (2014) Two new triterpenoids from Lycopodium japonicum Thunb. Chin J Chem 32:1007–1010. https://doi.org/10.1002/cjoc.201400456

    Article  CAS  Google Scholar 

  131. Inubushi Y, Tsuda Y, Sano T, Nakagawa R (1965) 21-Episerratenediol, isolation, and its structure. Chem Pharm Bull 13:104–105

    Article  CAS  Google Scholar 

  132. Miller N, Hootele C, Braekman JC (1973) Triterpenoids of Lycopodium megastachyum. Phytochemistry 12:1759–1761. https://doi.org/10.1016/0031-9422(73)80398-X

    Article  CAS  Google Scholar 

  133. Tsuda Y, Hatanaka M (1969) Triterpenoids of Lycopodium clavatum: the structure of 21-episerratriol. J Chem Soc D 1969:1040b–11042. https://doi.org/10.1039/c2969001040b

  134. Shi H, zhen-yu L, Guo YW (2005) A new serratane-type triterpene from Lycopodium phlegmaria. Nat Prod Res 19:777–781. https://doi.org/10.1080/14786410500044906

    Article  CAS  PubMed  Google Scholar 

  135. Sun ZH, Li W, Tang GH, Yin S (2017) A new serratene triterpenoid from Lycopodium japonicum. J Asian Nat Prod Res 19:299–303. https://doi.org/10.1080/10286020.2016.1208182

    Article  CAS  PubMed  Google Scholar 

  136. Zhou W, Kang F, Huang L, Li J, Wang W, Xiao L, Wen Q, Yu X, Xu Y, Zou Z, Zhou H, Zang H, Chen S, Xu K (2020) Serratane triterpenoids from Lycopodium complanatum and their anti-cancer and anti-inflammatory activities. Bioorg Chem 101:103959. https://doi.org/10.1016/j.bioorg.2020.103959

    Article  CAS  PubMed  Google Scholar 

  137. Trofimova NN, Gromova AS, Semenov AA (1996) Serratene triterpenoids from Lycopodium clavatum L. (Lycopodiaceae). Russ Chem Bull 45:961–963. https://doi.org/10.1007/BF01431333

    Article  Google Scholar 

  138. Sano T, Fujimoto T, Tsuda Y (1970) Clavatol: a novel triterpenoid of the bisnoronocerane type isolated from Lycopodium clavatum. J Chem Soc D 1970:1274–1275. https://doi.org/10.1039/c29700001274

    Article  Google Scholar 

  139. Inubushi Y, Hibino T, Harayama T, Hasegawa T, Somanathan R (1971) Triterpenoid constituents of Lycopodium phlegmaria L. J Chem Soc C: Organic 1971:3109–3114. https://doi.org/10.1039/j39710003109

    Article  Google Scholar 

  140. Li XL, Zhao Y, Cheng X, Tu L, Peng LY, Xu G, Zhao QS (2006) Japonicumins A–D: four new compounds from Lycopodium japonicum. Helv Chim Acta 89:1467–1473. https://doi.org/10.1002/hlca.200690148

    Article  CAS  Google Scholar 

  141. Tsuda Y, Fujimoto T (1970) The structure of lycoclavanin: triterpenoid of Lycopodium clavatum. J Chem Soc D 260. https://doi.org/10.1039/c29700000260

  142. Burnell RH, Mo L, Moinas M (1972) Le lycoxanthol, nouveau diterpenoide de Lycopodium lucidulum. Phytochemistry 11:2815–2820. https://doi.org/10.1016/S0031-9422(00)86518-8

    Article  CAS  Google Scholar 

  143. Inubushi Y, Sano T, Price JR (1967) Triterpene constituents of Lycopodium complanatum L. from new guinea. Aust J Chem 20:387–388

    Article  CAS  Google Scholar 

  144. Sano T, Tsuda Y, Inubushi Y (1970) Structures of tohogenol and tohogeninol: triterpenoids of Lycopodium serratum. Tetrahedron 26:2981–2986. https://doi.org/10.1016/S0040-4020(01)92878-9

    Article  CAS  Google Scholar 

  145. Orhan I, Terzioglu S, Şener B (2003) α-Onocerin: An acetylcholinesterase inhibitor from Lycopodium clavatum. Planta Med 69:265–267. https://doi.org/10.1055/s-2003-38489

    Article  CAS  PubMed  Google Scholar 

  146. Yao CP, Zou ZX, Zhang Y, Li J, Cheng F, Xu PS, Zhou G, Li XM, Xu KP, Tan GS (2019) New adenine analogues and a pyrrole alkaloid from Selaginella delicatula. Nat Prod Res 33:1985–1991. https://doi.org/10.1080/14786419.2018.1482892

    Article  CAS  PubMed  Google Scholar 

  147. Zhuo JX, Wang YH, Su XL, Mei RQ, Yang J, Kong Y, Long CL (2016) Neolignans from Selaginella moellendorffii. Nat Prod Bioprospect 6:161–166. https://doi.org/10.1007/s13659-016-0095-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Ma LY, Ma SC, Wei F, Lin RC, But PPH, Lee SHS, Lee SF (2003) Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem Pharm Bull 51:1264–1267. https://doi.org/10.1248/cpb.51.1264

    Article  CAS  Google Scholar 

  149. Zou Z, Xu P, Wu C, Zhu W, Zhu G, He X, Zhang G, Hu J, Liu S, Zeng W, Xu K, Tan G (2016) Carboxymethyl flavonoids and a chromone with antimicrobial activity from Selaginella moellendorffii Hieron. Fitoterapia 111:124–129. https://doi.org/10.1016/j.fitote.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  150. Bi Y, Zheng X, Feng W, Shi S (2004) Isolation and structural identification of chemical constituents from Selaginella tamariscina (Beauv.) Spring. Acta Pharm Sin 39:41–45

    CAS  Google Scholar 

  151. Liu JF, Xu KP, Li FS, Shen J, Hu CP, Zou H, Yang F, Liu GR, Xiang HL, Zhou YJ, Li YJ, Tan GS (2010) A new flavonoid from Selaginella tamariscina (Beauv.) Spring. Chem Pharm Bull 58:549–551. https://doi.org/10.1248/cpb.58.549

    Article  CAS  Google Scholar 

  152. Weng JK, Noel JP (2013) Chemodiversity in Selaginella: a reference system for parallel and convergent metabolic evolution in terrestrial plants. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00119

  153. Aguilar MI, Romero MG, Chávez MI, King-Díaz B, Lotina-Hennsen B (2008) Biflavonoids isolated from Selaginella lepidophylla inhibit photosynthesis in spinach chloroplasts. J Agric Food Chem 56:6994–7000. https://doi.org/10.1021/jf8010432

    Article  CAS  PubMed  Google Scholar 

  154. Cao Y, Chen JJ, Tan NH, Wu YP, Yang J, Wang Q (2010) Structure determination of selaginellins G and H from Selaginella pulvinata by NMR spectroscopy. Magn Resonance Chem: MRC 48:656–659. https://doi.org/10.1002/mrc.2623

    Article  CAS  PubMed  Google Scholar 

  155. Cao Y, Tan NH, Chen JJ, Zeng GZ, Ma YB, Wu YP, Yan H, Yang J, Lu LF, Wang Q (2010) Bioactive flavones and biflavones from Selaginella moellendorffii Hieron. Fitoterapia 81:253–258. https://doi.org/10.1016/j.fitote.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  156. Chen B, Wang X, Lin D, Xu D, Li S, Huang J, Weng S, Lin Z, Zheng Y, Yao H, Lin X (2019) Proliposomes for oral delivery of total biflavonoids extract from Selaginella doederleinii: formulation development, optimization, and in vitro–in vivo characterization. Int J Nanomedicine 14:6691–6706. https://doi.org/10.2147/IJN.S214686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Jung HJ, Park K, Lee IS, Kim HS, Yeo SH, Woo ER, Lee DG (2007) S-Phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol Pharm Bull 30:1969–1971. https://doi.org/10.1248/bpb.30.1969

    Article  CAS  PubMed  Google Scholar 

  158. Lee CW, Choi HJ, Kim HS, Kim DH, Chang IS, Moon HT, Lee SY, Oh WK, Woo ER (2008) Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorg Med Chem 16:732–738. https://doi.org/10.1016/j.bmc.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  159. Lin LC, Kuo YC, Chou CJ (2000) Cytotoxic biflavonoids from Selaginella delicatula. J Nat Prod 63:627–630. https://doi.org/10.1021/np990538m

    Article  CAS  PubMed  Google Scholar 

  160. Long HP, Zou H, Li FS, Li J, Luo P, Zou ZX, Hu CP, Xu KP, Tan GS (2015) Involvenflavones A-F, six new flavonoids with 3′-aryl substituent from Selaginella involven. Fitoterapia 105:254–259. https://doi.org/10.1016/j.fitote.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  161. López-Sáez JA, Alonso MJP, Negueruela AV (1994) Biflavonoids of Selaginella denticulata growing in Spain. Zeitschrift für Naturforschung C 49:267–270. https://doi.org/10.1515/znc-1994-3-417

    Article  Google Scholar 

  162. Shim SY, Lee S, Lee M (2018) Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 signaling. Molecules 23:926. https://doi.org/10.3390/molecules23040926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Swamy RC, Kunert O, Schühly W, Bucar F, Ferreira D, Rani VS, Kumar BR, Appa Rao AVN (2006) Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chem Biodivers 3:405–413. https://doi.org/10.1002/cbdv.200690044

    Article  CAS  PubMed  Google Scholar 

  164. Zheng JX, Wang NL, Liu HW, Chen HF, Li MM, Wu LY, Fan M, Yao XS (2008) Four new biflavonoids from Selaginella uncinata and their anti-anoxic effect. J Asian Nat Prod Res 10:945–952. https://doi.org/10.1080/10286020802181166

    Article  CAS  PubMed  Google Scholar 

  165. Xu J, Yang L, Wang R, Zeng K, Fan B, Zhao Z (2019) The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action. Fitoterapia 137:104255. https://doi.org/10.1016/j.fitote.2019.104255

    Article  CAS  PubMed  Google Scholar 

  166. Zheng JX, Zheng Y, Zhi H, Dai Y, Wang NL, Fang YX, Du ZY, Zhang K, Li MM, Wu LY, Fan M (2011) New 3′,8′′-linked biflavonoids from Selaginella uncinata Displaying protective effect against anoxia. Molecules 16:6206–6214. https://doi.org/10.3390/molecules16086206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Zou H, Yi ML, Xu KP, Sheng XF, Tan GS (2016) Two new flavonoids from Selaginella uncinata. J Asian Nat Prod Res 18:248–252. https://doi.org/10.1080/10286020.2015.1063617

    Article  CAS  PubMed  Google Scholar 

  168. Zou Z, Xu K, Xu P, Li X, Cheng F, Li J, Yu X, Cao D, Li D, Zeng W, Zhang G, Tan G (2017) Seladoeflavones A–F, six novel flavonoids from Selaginella doederleinii. Fitoterapia 116:66–71. https://doi.org/10.1016/j.fitote.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  169. Chen X, Xu PS, Zou ZX, Liu Y, Zhou WH, Ren Q, Li D, Li X-M, Xu KP, Tan GS (2019) Sinensiols B-G, six novel neolignans from Selaginella sinensis. Fitoterapia 134:256–263. https://doi.org/10.1016/j.fitote.2019.02.034

    Article  CAS  PubMed  Google Scholar 

  170. Cheng F, Xu K, Liu L, Yao C, Xu P, Zhou G, Li D, Li X, Chen K, Zou Z, Tan G (2018) New neolignans from Selaginella picta and their protective effect on HT-22 cells. Fitoterapia 127:69–73. https://doi.org/10.1016/j.fitote.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  171. He XR, Xu LY, Jin C, Yue PF, Zhou ZW, Liang XL (2019) Tamariscinols U–W, new dihydrobenzofuran-type norneolignans with tyrosinase inhibitory activity from Selaginella tamariscina. Phytochem Lett 34:79–83. https://doi.org/10.1016/j.phytol.2019.08.013

    Article  CAS  Google Scholar 

  172. Zhu Y, Huang RZ, Wang CG, Ouyang XL, Jing XT, Liang D, Wang HS (2018) New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fitoterapia 130:281–289. https://doi.org/10.1016/j.fitote.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  173. Zhang LP, Liang YM, Wei XC, Cheng DL (2007) A new unusual natural pigment from Selaginella sinensis and its noticeable physicochemical properties. J Org Chem 72:3921–3924. https://doi.org/10.1021/jo0701177

    Article  CAS  PubMed  Google Scholar 

  174. Cao Y, Chen JJ, Tan NH, Oberer L, Wagner T, Wu YP, Zeng GZ, Yan H, Wang Q (2010) Antimicrobial selaginellin derivatives from Selaginella pulvinata. Bioorg Med Chem Lett 20:2456–2460. https://doi.org/10.1016/j.bmcl.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  175. Cao Y, Zhao M, Zhu Y, Zhu ZH, Oberer L, Duan JA (2017) Diselaginellin B, an unusual dimeric molecule from Selaginella pulvinata, inhibited metastasis and induced apoptosis of SMMC-7721 human hepatocellular carcinoma cells. J Nat Prod 80:3151–3158. https://doi.org/10.1021/acs.jnatprod.7b00404

    Article  CAS  PubMed  Google Scholar 

  176. Cheng XL, Ma SC, Yu JD, Yang SY, Xiao XY, Hu JY, Lu Y, Shaw PC, But PPH, Lin RC (2008) Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem Pharm Bull 56:982–984. https://doi.org/10.1248/cpb.56.982

    Article  CAS  Google Scholar 

  177. Le DD, Nguyen DH, Zhao BT, Seong SH, Choi JS, Kim SK, Kim JA, Min BS, Woo MH (2017) PTP1B inhibitors from Selaginella tamariscina (Beauv.) Spring and their kinetic properties and molecular docking simulation. Bioorg Chem 72:273–281. https://doi.org/10.1016/j.bioorg.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  178. Liu X, Luo HB, Huang YY, Bao JM, Tang GH, Chen YY, Wang J, Yin S (2014) Selaginpulvilins A–D, New phosphodiesterase-4 inhibitors with an unprecedented skeleton from Selaginella pulvinata. Org Lett 16:282–285. https://doi.org/10.1021/ol403282f

    Article  CAS  PubMed  Google Scholar 

  179. Liu X, Tang GH, Weng HZ, Zhang JS, Xu YK, Yin S (2018) A new selaginellin derivative and a new triarylbenzophenone analog from the whole plant of Selaginella pulvinata. J Asian Nat Prod Res 20:1123–1128. https://doi.org/10.1080/10286020.2017.1378646

    Article  CAS  PubMed  Google Scholar 

  180. Liu R, Zou H, Zou ZX, Cheng F, Yu X, Xu PS, Li XM, Li D, Xu KP, Tan GS (2020) Two new anthraquinone derivatives and one new triarylbenzophenone analog from Selaginella tamariscina. Nat Prod Res 34:2709–2714. https://doi.org/10.1080/14786419.2018.1452008

    Article  CAS  PubMed  Google Scholar 

  181. Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH (2015) Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J Nat Prod 78:34–42. https://doi.org/10.1021/np5005856

    Article  CAS  PubMed  Google Scholar 

  182. Tan GS, Xu KP, Li FS, Wang CJ, Li TY, Hu CP, Shen J, Zhou YJ, Li YJ (2009) Selaginellin C, a new natural pigment from Selaginella pulvinata Maxim (Hook et Grev.). J Asian Nat Prod Res 11:1001–1004. https://doi.org/10.1080/10286020903207043

    Article  CAS  PubMed  Google Scholar 

  183. Yang C, Shao Y, Li K, Xia W (2012) Bioactive selaginellins from Selaginella tamariscina (Beauv.) Spring. Beilstein J Org Chem 8:1884–1889. https://doi.org/10.3762/bjoc.8.217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Yao WN, Huang RZ, Hua J, Zhang B, Wang CG, Liang D, Wang HS (2017) Selagintamarlin A: A selaginellin analogue possessing a 1H-2-benzopyran core from Selaginella tamariscina. ACS Omega 2:2178–2183. https://doi.org/10.1021/acsomega.7b00209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Zhang G, Jing Y, Zhang H, Ma E, Guan J, Xue F, Liu H, Sun X (2012) Isolation and cytotoxic activity of selaginellin derivatives and biflavonoids from Selaginella tamariscina. Planta Med 78:390–392. https://doi.org/10.1055/s-0031-1298175

    Article  CAS  PubMed  Google Scholar 

  186. Zheng J, Zheng Y, Zhi H, Dai Y, Wang N, Wu L, Fan M, Fang Y, Zhao S, Zhang K (2013) Two new steroidal saponins from Selaginella uncinata (Desv.) Spring and their protective effect against anoxia. Fitoterapia 88:25–30. https://doi.org/10.1016/j.fitote.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  187. Chen JJ, Duh CY, Chen JF (2005) New cytotoxic biflavonoids from Selaginella delicatula. Planta Med 71:659–665. https://doi.org/10.1055/s-2005-871273

    Article  CAS  PubMed  Google Scholar 

  188. Ke LY, Zhang Y, Xia MY, Zhuo JX, Wang YH, Long CL (2018) Modified abietane diterpenoids from whole plants of Selaginella moellendorffii. J Nat Prod 81:418–422. https://doi.org/10.1021/acs.jnatprod.7b00909

    Article  CAS  PubMed  Google Scholar 

  189. Wang YH, Long CL, Yang FM, Wang X, Sun QY, Wang HS, Shi YN, Tang GH (2009) Pyrrolidinoindoline alkaloids from Selaginella moellendorfii. J Nat Prod 72:1151–1154. https://doi.org/10.1021/np9001515

    Article  CAS  PubMed  Google Scholar 

  190. Lee NY, Min HY, Lee J, Nam JW, Lee YJ, Han AR, Wiryawan A, Suprapto W, Lee SK, Seo EK (2008) Identification of a new cytotoxic biflavanone from Selaginella doederleinii. Chem Pharm Bull 56:1360–1361. https://doi.org/10.1248/cpb.56.1360

    Article  CAS  Google Scholar 

  191. Xu JC, Liu XQ, Chen KL (2009) A new biflavonoid from Selaginella labordei Hieron. ex Christ. Chin Chem Lett 20:939–941. https://doi.org/10.1016/j.cclet.2009.03.046

    Article  CAS  Google Scholar 

  192. Wang HS, Sun L, Wang YH, Shi YN, Tang GH, Zhao FW, Niu HM, Long CL, Li L (2011) Carboxymethyl flavonoids and a monoterpene glucoside from Selaginella moellendorffii. Arch Pharm Res 34:1283–1288. https://doi.org/10.1007/s12272-011-0807-7

    Article  CAS  PubMed  Google Scholar 

  193. Hwang JH (2013) Antibacterial effect of amentoflavone and its synergistic effect with antibiotics. J Microbiol Biotechnol 23:953–958. https://doi.org/10.4014/jmb.1302.02045

    Article  CAS  PubMed  Google Scholar 

  194. Yao W, Lin Z, Wang G, Li S, Chen B, Sui Y, Huang J, Liu Q, Shi P, Lin X, Liu Q, Yao H (2019) Delicaflavone induces apoptosis via mitochondrial pathway accompanying G2/M cycle arrest and inhibition of MAPK signaling cascades in cervical cancer HeLa cells. Phytomedicine 62:152973. https://doi.org/10.1016/j.phymed.2019.152973

    Article  CAS  PubMed  Google Scholar 

  195. Lee J, Choi Y, Woo ER, Lee DG (2009) Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. Biochem Biophys Res Commun 379:676–680. https://doi.org/10.1016/j.bbrc.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  196. Zou Z, Xu P, Zhang G, Cheng F, Chen K, Li J, Zhu W, Cao D, Xu K, Tan G (2017) Selagintriflavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry 134:114–121. https://doi.org/10.1016/j.phytochem.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  197. Zeng W, Yao CP, Xu PS, Zhang GG, Liu ZQ, Xu KP, Zou ZX, Tan GS (2017) A new neolignan from Selaginella moellendorffii Hieron. Nat Prod Res 31:2223–2227. https://doi.org/10.1080/14786419.2017.1297935

    Article  CAS  PubMed  Google Scholar 

  198. Wang YZ, Chen H, Zheng XK, Feng WS (2007) A new sesquilignan from Selaginella sinensis (Desv.) Spring. Chin Chem Lett 18:1224–1226. https://doi.org/10.1016/j.cclet.2007.08.016

    Article  CAS  Google Scholar 

  199. Zheng X, Shi S, Bi Y, Feng W, Wang J, Niu J (2004) The isolation and identification of a new lignanoside from Selaginella tamariscina (Beauv.) Spring. Acta Pharm Sin 39:719–721

    CAS  Google Scholar 

  200. Zhu QF, Shao LD, Wu XD, Liu JX, Zhao QS (2019) Isolation, structural assignment of isoselagintamarlin A from Selaginella tamariscina and its biomimetic synthesis. Nat Products Bioprospect 9:69–74. https://doi.org/10.1007/s13659-018-0195-5

    Article  CAS  Google Scholar 

  201. Xu KP, Zou H, Tan Q, Li FS, Liu JF, Xiang HL, Zou ZX, Long HP, Li YJ, Tan GS (2011) Selaginellins I and J, two new alkynyl phenols, from Selaginella tamariscina (Beauv.) Spring. J Asian Nat Prod Res 13:93–96. https://doi.org/10.1080/10286020.2010.536535

    Article  CAS  PubMed  Google Scholar 

  202. Xu KP, Zou H, Li FS, Xiang HL, Zou ZX, Long HP, Li J, Luo YJ, Li YJ, Tan GS (2011) Two new selaginellin derivatives from Selaginella tamariscina (Beauv.) Spring. J Asian Nat Prod Res 13:356–360. https://doi.org/10.1080/10286020.2011.558840

    Article  CAS  PubMed  Google Scholar 

  203. Cao Y, Yao Y, Huang XJ, Oberer L, Wagner T, Guo JM, Gu W, Liu WD, Lv GX, Shen YN, Duan JA (2015) Four new selaginellin derivatives from Selaginella pulvinata: mechanism of racemization process in selaginellins with quinone methide. Tetrahedron 71:1581–1587. https://doi.org/10.1016/j.tet.2015.01.017

    Article  CAS  Google Scholar 

  204. Xu KP, Li J, Zhu GZ, He XA, Li FS, Zou ZX, Tan LH, Cheng F, Tan GS (2015) New selaginellin derivatives from Selaginella tamariscina. J Asian Nat Prod Res 17:819–822. https://doi.org/10.1080/10286020.2015.1016001

    Article  CAS  PubMed  Google Scholar 

  205. Zhu B, Wang TB, Hou LJ, Lv HX, Liu AM, Zeng P, Li AH (2016) A New selaginellin from Selaginella moellendorffii inhibits hepatitis B virus gene expression and replication. Chem Nat Compd 52:624–627. https://doi.org/10.1007/s10600-016-1725-1

    Article  CAS  Google Scholar 

  206. Woo S, Bin KK, Kim J, Sung SH (2019) Molecular networking reveals the chemical diversity of selaginellin derivatives, natural phosphodiesterase-4 inhibitors from Selaginella tamariscina. J Nat Prod 82:1820–1830. https://doi.org/10.1021/acs.jnatprod.9b00049

    Article  CAS  PubMed  Google Scholar 

  207. Zhang JS, Liu X, Weng J, Guo YQ, Li QJ, Ahmed A, Tang GH, Yin S (2017) Natural diarylfluorene derivatives: isolation, total synthesis, and phosphodiesterase-4 inhibition. Organic Chem Front 4:170–177. https://doi.org/10.1039/C6QO00623J

    Article  CAS  Google Scholar 

  208. Nguyen PH, Ji DJ, Han YR, Choi JS, Rhyu DY, Min BS, Woo MH (2015) Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorg Med Chem 23:3730–3737. https://doi.org/10.1016/j.bmc.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  209. Gao L, Yin S, Li Z, Sha Y, Pei Y, Shi G, Jing Y, Hua H (2007) Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells. Planta Med 73:1112–1115. https://doi.org/10.1055/s-2007-981562

    Article  CAS  PubMed  Google Scholar 

  210. Jin M, Zhang C, Zheng T, Yao D, Shen L, Luo J, Jiang Z, Ma J, Jin XJ, Cui J, Lee JJ, Li G (2014) A new phenyl glycoside from the aerial parts of Equisetum hyemale. Nat Prod Res 28:1813–1818. https://doi.org/10.1080/14786419.2014.947491

    Article  CAS  PubMed  Google Scholar 

  211. Milovanović V, Radulović N, Todorović Z, Stanković M, Stojanović G (2007) Antioxidant, antimicrobial and genotoxicity screening of hydro-alcoholic extracts of five Serbian Equisetum Species. Plant Foods Hum Nutr 62:113–119. https://doi.org/10.1007/s11130-007-0050-z

    Article  PubMed  Google Scholar 

  212. Oh H, Kim DH, Cho JH, Kim YC (2004) Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. J Ethnopharmacol 95:421–424. https://doi.org/10.1016/j.jep.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  213. Wei Z, Pan Y, Li L, Huang Y, Qi X, Luo M, Zu Y, Fu Y (2014) Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high-performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction. J Sep Sci 37:3045–3051. https://doi.org/10.1002/jssc.201400575

    Article  CAS  PubMed  Google Scholar 

  214. Ganeva Y, Chanev C, Dentchev T (2001) Triterpenoids and sterols from Equiseturn arvense. Comptes Rendus de l’Academie Bulgare des Sciences 54:53–56

    CAS  Google Scholar 

  215. Camacho MR, Mata DCR, Palacios-Rios M (1992) Constituents of Equisetum myriochaetum. Fitoterapia 63:471

    CAS  Google Scholar 

  216. Cramer L, Ernst L, Lubienski M, Papke U, Schiebel HM, Jerz G, Beuerle T (2015) Structural and quantitative analysis of Equisetum alkaloids. Phytochemistry 116:269–282. https://doi.org/10.1016/j.phytochem.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  217. Tan JM, Qiu YH, Tan XQ, Tan CH, Xiao K (2011) Chemical constituents of Equisetum debile. J Asian Nat Prod Res 13:811–816. https://doi.org/10.1080/10286020.2011.596829

    Article  CAS  PubMed  Google Scholar 

  218. Tipke I, Bücker L, Middelstaedt J, Winterhalter P, Lubienski M, Beuerle T (2019) HILIC HPLC-ESI-MS/MS identification and quantification of the alkaloids from the genus Equisetum. Phytochem Anal 30:669–678. https://doi.org/10.1002/pca.2840

    Article  CAS  PubMed  Google Scholar 

  219. Kolomiets NE, Yusubov MS, Kalinkina GI (2012) Flavonoid composition of Equisetum arvense and E. x litorale studied by high-performance liquid chromatography-mass spectrometry. Chem Nat Compd 48:135–136. https://doi.org/10.1007/s10600-012-0181-9

    Article  CAS  Google Scholar 

  220. Yeganegi M, Tabatabaei Yazdi F, Mortazavi SA, Asili J, Alizadeh Behbahani B, Beigbabaei A (2018) Equisetum telmateia extracts: chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microb Pathog 116:62–67. https://doi.org/10.1016/j.micpath.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  221. Correia H, González-Paramás A, Amaral MT, Santos-Buelga C, Batista MT (2005) Characterisation of polyphenols by HPLC-PAD-ESI/MS and antioxidant activity in Equisetum telmateia. Phytochem Anal 16:380–387. https://doi.org/10.1002/pca.864

    Article  CAS  PubMed  Google Scholar 

  222. Kanchanapoom T, Otsuka H, Ruchirawat S (2007) Megastigmane glucosides from Equisetum debile and E. diffusum. Chem Pharm Bull 55:1277–1280. https://doi.org/10.1248/cpb.55.1277

    Article  CAS  Google Scholar 

  223. Mimica-Dukic N, Simin N, Cvejic J, Jovin E, Orcic D, Bozin B (2008) Phenolic compounds in field Horsetail (Equisetum arvense L.) as natural antioxidants. Molecules 13:1455–1464. https://doi.org/10.3390/molecules13071455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Jun C, Li-Jiang X, Ya-Ming X (2001) Three new phenolic glycosides from the fertile sprouts of Equisetum arvense. Acta Bot Sin 43:193–197

    Google Scholar 

  225. Francescato LN, Debenedetti SL, Schwanz TG, Bassani VL, Henriques AT (2013) Identification of phenolic compounds in Equisetum giganteum by LC–ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 105:192–203. https://doi.org/10.1016/j.talanta.2012.11.072

    Article  CAS  PubMed  Google Scholar 

  226. Wiedenfeld H, Andrade Cetto A, Perez Amador C (2000) Flavonol glycosides from Equisetum myriochaetum. Biochem Syst Ecol 28:395–397. https://doi.org/10.1016/S0305-1978(99)00074-5

    Article  CAS  PubMed  Google Scholar 

  227. Gurbuz I, Yesilada E, Ito S (2009) An anti-ulcerogenic flavonol diglucoside from Equisetum palustre L. J Ethnopharmacol 121:360–365. https://doi.org/10.1016/j.jep.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  228. de Queiroz GM, Politi FAS, Rodrigues ER, Souza-Moreira TM, Moreira RRD, Cardoso CRP, Santos LC, Pietro RCLR (2015) Phytochemical characterization, antimicrobial activity, and antioxidant potential of Equisetum hyemale L. (Equisetaceae) extracts. J Med Food 18:830–834. https://doi.org/10.1089/jmf.2014.0089

    Article  CAS  PubMed  Google Scholar 

  229. Xu XH, Tan CH, Jiang SH, Zhu DY (2006) Debilosides A–C: three new megastigmane glucosides from Equisetum debile. Helv Chim Acta 89:1422–1426. https://doi.org/10.1002/hlca.200690142

    Article  CAS  Google Scholar 

  230. Veit M, Geiger H, Wray V, Abou-Mandour A, Rozdzinski W, Witte L, Strack D, Czygan FC (1993) Equisetumpyrone, a styrylpyrone glucoside in gametophytes from Equisetum arvense. Phytochemistry 32:1029–1032. https://doi.org/10.1016/0031-9422(93)85249-Q

    Article  CAS  Google Scholar 

  231. Veit M, Geiger H, Kast B, Beckert C, Horn C, Markham KR, Wong H, Czygan FC (1995) Styrylpyrone glucosides from Equisetum. Phytochemistry 39:915–917. https://doi.org/10.1016/0031-9422(95)00941-Y

    Article  CAS  Google Scholar 

  232. Melos JLR, Silva LB, Peres MTLP, Mapeli AM, Faccenda O, Anjos HH, Torres TG, Tiviroli SC, Batista AL, Almeida FGN, Flauzino NS, Tibana LA, Hess SC, Honda NK (2007) Constituintes químicos e avaliação do potencial alelopático de Adiantum tetraphyllum Humb. & amp; Bonpl. Ex. Wild (Pteridaceae). Química Nova 30:292–297. https://doi.org/10.1590/S0100-40422007000200010

    Article  CAS  Google Scholar 

  233. Ageta H, Shiojima K, Arai Y (1968) Fern constituents: neohopene, hopene-II, neohopadiene, and fernadiene isolated from Adiantum species. Chem Commun (Camb) 1968:1105–1107. https://doi.org/10.1039/c19680001105

    Article  Google Scholar 

  234. Shiojima K, Arai Y, Kasama T, Ageta H (1993) Fern constituents: triterpenoids Isolated from the leaves of Adiantum monochlamys. filicenol A, filicenol B, isoadiantol B, hakonanediol and epihakonanediol. Chem Pharm Bull 41:262–267. https://doi.org/10.1248/cpb.41.262

    Article  CAS  Google Scholar 

  235. Shiojima K, Sasaki Y, Ageta H (1993) Fern constituents: triterpenoids isolated from the leaves of Adiantum pedatum. 23-Hydroxyfernene, glaucanol A and filicenoic acid. Chem Pharm Bull 41:268–271. https://doi.org/10.1248/cpb.41.268

    Article  CAS  Google Scholar 

  236. Shiojima K, Arai Y, Nakane T, Ageta H (1997) Fern constituents: Adiantum cuneatum. I. Three new triterpenoids, glaucanol B acetate, 7β,25-epoxyfern-8-ene and 25-norfern-7-en-10β-yl formate. Chem Pharm Bull 45:636–638. https://doi.org/10.1248/cpb.45.636

    Article  CAS  Google Scholar 

  237. Tsuzuki K, Ôhashi A, Arai Y, Masuda K, Takano A, Shiojima K, Ageta H, Cai SQ (2001) Triterpenoids from Adiantum caudatum. Phytochemistry 58:363–367. https://doi.org/10.1016/S0031-9422(01)00198-4

    Article  CAS  PubMed  Google Scholar 

  238. Zaman A, Prakash A, Berti G, Bottari F, Macchia B, Marsili A, Morelli I (1966) A new nortriterpenoid ketol from two adiantum species. Tetrahedron Lett 7:3943–3947. https://doi.org/10.1016/S0040-4039(00)70007-4

    Article  Google Scholar 

  239. Nakane T, Arai Y, Masuda K, Ishizaki Y, Ageta H, Shiojima K (1999) Fern constituents: Six new triterpenoid alcohols from Adiantum capillus-veneris. Chem Pharm Bull 47:543–547. https://doi.org/10.1248/cpb.47.543

    Article  CAS  Google Scholar 

  240. Reddy NVL, Ravikanth V, Prabhakar Rao T, Diwan PV, Venkateswarlu Y (2001) A new triterpenoid from the fern Adiantum lunulatum and evaluation of antibacterial activity. Phytochemistry 56:173–175. https://doi.org/10.1016/S0031-9422(00)00334-4

    Article  CAS  PubMed  Google Scholar 

  241. Nakane T, Maeda Y, Ebihara H, Arai Y, Masuda K, Takano A, Ageta H, Shiojima K, Cai SQ, Abdel-Halim OB (2002) Fern constituents: triterpenoids from Adiantum capillus-veneris. Chem Pharm Bull 50:1273–1275. https://doi.org/10.1248/cpb.50.1273

    Article  CAS  Google Scholar 

  242. Shiojima K, Ageta H (1994) Fern constituents: triterpenoids isolated from the leaves of Adiantum edgeworthii. Structures of 19α-hydroxyadiantone and Fern-9(11)-en-25-oic acid. Chem Pharm Bull 42:45–47. https://doi.org/10.1248/cpb.42.45

    Article  CAS  Google Scholar 

  243. Gupta SK, Bagchi A, Roy SK, Ray AB (1990) Chemical constituents of a member of Adiantum caudatum complex. J Indian Chem Soc 67:86–88

    CAS  Google Scholar 

  244. Marino A, Elberti MG, Cataldo A (1989) Phytochemical investigation of Adiantum capillus-veneris. Bollettino della Societa Italiano di Biologia Sperimentale 65:461–463

    CAS  Google Scholar 

  245. Ibraheim ZZ, Ahmed AS, Gouda YG (2011) Phytochemical and biological studies of Adiantum capillus-veneris L. Saudi Pharmaceutical J 19:65–74. https://doi.org/10.1016/j.jsps.2011.01.007

    Article  CAS  Google Scholar 

  246. Akabori Y, Hasegawa M (1969) Flavanoid pattern in the Pteridaceae II. Flavanoid constituents in the fronds of Adiantum capillus-veneris and A. cuneatum. Bot Mag Tokyo 82:294–297

    Article  CAS  Google Scholar 

  247. Wollenweber E (1979) Some new external flavonoids from American ferns. Flora 168:138–145

    Article  CAS  Google Scholar 

  248. Hasegawa M, Akabori Y (1968) Flavanoid pattern in Pteridaceae, I Flavonoid glycosides obtained from the fronds of Adiantum aethiopicum and A. monochlamys. Bot Mag Tokyo 81:469–472

    Article  CAS  Google Scholar 

  249. Murakami T, Wada H, Tanaka N, Kido T, Iida H, Saiki Y, Chen CM (1986) Chemical and chemotaxonomical studies of Filices. LXV. A few new flavonoid glycosides. Yakugaku Zasshi 106:982–988

    Article  CAS  Google Scholar 

  250. Sallam MM, Mostafa AE, Genady EAM, Ismail SK (2019) Phytochemical and biological study of Adiantum capillus-veneris L. growing in Egypt. Al-Azhar J Pharmaceutical Sci 59:9–26. https://doi.org/10.21608/ajps.2019.64101

    Article  Google Scholar 

  251. Imperato F (1982) Sulphate esters of hydroxycinnamic acid – sugar derivatives from Adiantum capillus-veneris. Phytochemistry 21:2717–2718. https://doi.org/10.1016/0031-9422(82)83105-1

    Article  CAS  Google Scholar 

  252. Hussain A, Siddiqui HL, Rashid R, Khan KM, Parvez M (2008) 1-(5a,5b,8,8,11a,13b-Hexamethyleicosahydro-1 H -cyclopenta [a]chrysen-3-yl)-1-ethanone. Acta Crystallographica Sect E 64(4):o723. https://doi.org/10.1107/S1600536808006831

    Article  CAS  Google Scholar 

  253. Chopra N, Alam MS, Ali M (2001) Isolation and characterization of two novel triterpenes from Adiantum venustum. Indian J Chem 40:350–353

    Google Scholar 

  254. Shiojima K, Arai Y, Nakane T, Ageta H (1997) Fern constituents: Adiantum cuneatum. II. six new triterpenolds, neohop-18-en-12α-ol, 13-epineohop-18-en-12α-ol, neohop-13(18)-en-19α-ol, fern-7-en-25-ol, Fern-9(11)-en-25-ol, and adian-5-en-25-ol. Chem Pharm Bull 45:639–642. https://doi.org/10.1248/cpb.45.639

    Article  CAS  Google Scholar 

  255. Hayat S, Rahman A, Choudhary MI, Khan KM, Latif H, Bayer E (2002) Two new triterpenes from fern Adiantum incisum. Zeitschrift für Naturforschung B 57:233–238. https://doi.org/10.1515/znb-2002-0215

    Article  CAS  Google Scholar 

  256. Berti G, Bottari F, Marsili A (1969) Structure and stereochemistry of a triterpenoid epoxide from Adiantum capillus-veneris. Tetrahedron 25:2939–2947. https://doi.org/10.1016/S0040-4020(01)82826-X

    Article  CAS  PubMed  Google Scholar 

  257. Haider S, Kharbanda C, Alam MS, Hamid H, Ali M, Alam M, Nazreen S, Ali Y (2013) Anti-inflammatory and anti-nociceptive activities of two new triterpenoids from Adiantum capillus-veneris Linn. Nat Prod Res 27:2304–2310. https://doi.org/10.1080/14786419.2013.828292

    Article  CAS  PubMed  Google Scholar 

  258. Shiojima K, Nakane T, Ageta H, Cai SQ (1996) Fern constituents: two new secofilicane triterpenoids from Adiantum cuneatum. Chem Pharm Bull 44:630–632. https://doi.org/10.1248/cpb.44.630

    Article  CAS  Google Scholar 

  259. Shiojima K, Arai Y, Nakane T, Ageta H, Cai SQ (1997) Fern constituents: Adiantum cuneatum. III. four new triterpenoids, 4,23-bisnor-3,4-secofilic-5(24)-en-3-al, 4,23-bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene, 7β,25-epoxyfern-9(11)-en-8α-ol and 7α,8α-epoxyfernan-25-ol. Chem Pharm Bull 45:1608–1610. https://doi.org/10.1248/cpb.45.1608

    Article  CAS  Google Scholar 

  260. Hussain A, Siddiqui HL, Zia-ur-Rehman M, Elsegood MRJ, Khan MK (2008) 4-Hydroxy-4,6a,6b,9,9,12a,14b-heptamethylperhydropicen-3-one hemihydrate isolated from Adiantum incisum. Acta Crystallographica Sect E Struct Rep Online 64:o264–o264. https://doi.org/10.1107/S1600536807064021

    Article  CAS  Google Scholar 

  261. Brahmachari G, Chatterjee D (2002) Triterpenes from Adiantum lunulactum. Fitoterapia 73:363–368. https://doi.org/10.1016/S0367-326X(02)00119-3

    Article  CAS  PubMed  Google Scholar 

  262. Ageta H, Iwata K (1966) Fern constituents: adipedatol, filicenal and other triterpenoids isolated from Adiantum pedatum. Tetrahedron Lett 7:6069–6074. https://doi.org/10.1016/S0040-4039(01)84172-1

    Article  Google Scholar 

  263. Ageta H, Iwata K, Natori S (1964) Fern constituents: adianene, filicene, 7-fernene, isofernene and diploptene. Triterpenoid hydrocarbons isolated from Adiantum monochlamys. Tetrahedron Lett 5:3413–3418. https://doi.org/10.1016/S0040-4039(01)89403-X

    Article  Google Scholar 

  264. Ageta H, Shiojima K, Kamaya R, Masuda K (1978) Fern constituent: naturally occurring adian-5-ene ozonide in the leaves of Adiantum monochlamys and Oleandra wallichii. Tetrahedron Lett 19:899–900. https://doi.org/10.1016/S0040-4039(01)91430-3

    Article  Google Scholar 

  265. Bresciani LFV, Priebe JP, Yunes RA, Dal Magro J, Delle Monache F, de Campos F, de Souza MM, Cechinel-Filho V (2003) Pharmacological and phytochemical evaluation of Adiantum cuneatum growing in Brazil. Zeitschrift für Naturforschung C 58:191–194. https://doi.org/10.1515/znc-2003-3-409

    Article  CAS  Google Scholar 

  266. Alam MS, Chopra N, Ali M, Niwa M (2000) Normethyl pentacyclic and lanostane-type triterpenes from Adiantum venustum. Phytochemistry 54:215–220. https://doi.org/10.1016/S0031-9422(00)00063-7

    Article  CAS  PubMed  Google Scholar 

  267. Banerjee J, Datra G, Dutta CP, Eguchi T, Fujimoto Y, Kakinuma K (1991) Fern-9(11)-en-25-oic acid, a triterpene from Adiantum venustum. Phytochemistry 30:3478–3480. https://doi.org/10.1016/0031-9422(91)83238-G

    Article  CAS  Google Scholar 

  268. Chopra N, Alam MS, Ali M, Niwa M (1997) A novel tirucallane triterpene from Adiantum venustum. Pharmazie 52:412–413

    CAS  Google Scholar 

  269. de Souza MM, Pereira MA, Ardenghi JV, Mora TC, Bresciani LF, Yunes RA, Delle Monache F, Cechinel-Filho V (2009) Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacol Biochem Behav 93:40–46. https://doi.org/10.1016/j.pbb.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  270. Pradeep Kumar R, Dinesh Babu KV, Evans DA (2019) Isolation, characterization and mode of action of a larvicidal compound, 22-hydroxyhopane from Adiantum latifolium Lam. against Oryctes rhinoceros Linn. Pestic Biochem Physiol 153:161–170. https://doi.org/10.1016/j.pestbp.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  271. Ageta H, Iwata K, Arai Y, Tsuda Y, Isobe K, Fukushima S (1966) Fern constituents: hydroxyadiantone and ketohakohanol isolated from Adiantum monochlamys. Tetrahedron Lett 7:5679–5684. https://doi.org/10.1016/S0040-4039(01)84177-0

    Article  Google Scholar 

  272. Chopra N, Alam MS, Ali M, Niwa M (2000) A new lanostane triterpenic ether from Adiantum venustum. Pharmazie 55:538–539

    CAS  PubMed  Google Scholar 

  273. Cao J, Xia X, Chen X, Xiao J, Wang Q (2013) Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer, and acetylcholinesterase inhibition activities. Food Chem Toxicol 51:242–250. https://doi.org/10.1016/j.fct.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  274. Erhirhie EO, Emeghebo CN, Ilodigwe EE, Ajaghaku DL, Umeokoli BO, Eze PM, Ngwoke KG, Okoye FBC (2019) Dryopteris filix-mas (L.) Schott ethanolic leaf extract and fractions exhibited profound anti-inflammatory activity. Avecinna J Phytomed 9:396–409

    CAS  Google Scholar 

  275. Imperato F (2006) Kaempferol 3-O-(acetylrutinoside), a new flavonoid and two new fern constituents, quercetin 3-O-(acetylglucoside) and 3-O-(acetylrutinoside) from Dryopteris villarii. Am Fern J 96:93–99

    Article  Google Scholar 

  276. Imperato F (2007) A new flavonoid, quercetin 3-O-(X″-acetyl-X″-cinnamoyl-glucoside) and a new fern constituent, quercetin 3-O- (glucosylrhamnoside) from Dryopteris villarii. Am Fern J 97:124–126. https://doi.org/10.1640/0002-8444(2007)97[124:SN]2.0.CO;2

    Article  Google Scholar 

  277. Jiang B, Chi C, Fu Y, Zhang Q, Wang G (2013) In vivo anthelmintic effect of flavonol rhamnosides from Dryopteris crassirhizoma against Dactylogyrus intermedius in goldfish (Carassius auratus). Parasitol Res 112:4097–4104. https://doi.org/10.1007/s00436-013-3600-3

    Article  PubMed  Google Scholar 

  278. Li B, Zhu JF, Zou ZJ, Yin YQ, Shen ZB (2009) Studies on the chemical constituents of Dryopteris fragrans. Zhong Yao Cai 32:1232–1233

    CAS  PubMed  Google Scholar 

  279. Min BS, Tomiyama M, Ma CM, Nakamura N, Hattori M (2001) Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem Pharm Bull 49:546–550. https://doi.org/10.1248/cpb.49.546

    Article  CAS  Google Scholar 

  280. Yoo G, Park S, Yang H, Nguyen X, Kim N, Park J, Kim S (2017) Two new phenolic glycosides from the aerial part of Dryopteris erythrosora. Pharmacogn Mag 13:673–676. https://doi.org/10.4103/pm.pm_326_16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Zhang X, Wang X, Wang M, Cao J, Xiao J, Wang Q (2019) Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLoS One 14:e0200174. https://doi.org/10.1371/journal.pone.0200174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Huang YH, Zeng WM, Li GY, Liu GQ, Zhao DD, Wang J, Zhang YL (2014) Characterization of a new sesquiterpene and antifungal activities of chemical constituents from Dryopteris fragrans (L.) Schott. Molecules 19:507–513. https://doi.org/10.3390/molecules19010507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Liu ZD, Zhao DD, Jiang S, Xue B, Zhang YL, Yan XF (2018) Anticancer phenolics from Dryopteris fragrans (L.) Schott. Molecules 23:680. https://doi.org/10.3390/molecules23030680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  284. Zhang T, Wang L, Duan DH, Zhang YH, Huang SX, Chang Y (2018) Cytotoxicity-guided isolation of two new phenolic derivatives from Dryopteris fragrans (L.). Schott Mol 23:1652. https://doi.org/10.3390/molecules23071652

    Article  CAS  Google Scholar 

  285. Zhao DD, Zhao QS, Liu L, Chen ZQ, Zeng WM, Lei H, Zhang YL (2014) Compounds from Dryopteris Fragrans (L.) Schott with cytotoxic activity. Molecules 19:3345–3355. https://doi.org/10.3390/molecules19033345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  286. Coskun N, Sakushima A, Nishibe S, Hisada S (1982) Phloroglucinol derivatives of Dryopteris abbreviata. Chem Pharm Bull 30:4102–4106

    Article  CAS  Google Scholar 

  287. Euw J, Reichstein T, Widén CJ (1985) The Phloroglucinols of Dryopteris aitoniana PICHI SERM. (Dryopteridaceae, Pteridophyta). Helv Chim Acta 68:1251–1275. https://doi.org/10.1002/hlca.19850680522

    Article  Google Scholar 

  288. Hisada S, Inoue O, Inagaki I (1974) A new acylphloroglucinol of Dryopteris gymnosora. Phytochemistry 13:655–655

    Article  CAS  Google Scholar 

  289. Hua X, Yang Q, Zhang W, Dong Z, Yu S, Schwarz S, Liu S (2018) Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant Staphylococcus aureus. Front Pharmacol 9:619. https://doi.org/10.3389/fphar.2018.00619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Ito H, Muranaka T, Mori K, Jin ZX, Yoshida T (1997) Dryofragin and aspidin pb, piscicidal components from Dryopteris fragrans. Chem Pharm Bull 45:1720–1722. https://doi.org/10.1248/cpb.45.1720

    Article  CAS  Google Scholar 

  291. Ito H, Muranaka T, Mori K, Jin Z-X, Tokuda H, Nishino H, Yoshida T (2000) Ichthyotoxic phloroglucinol derivatives from Dryopteris fragrans and their anti-tumor promoting activity. Chem Pharm Bull 48:1190–1195. https://doi.org/10.1248/cpb.48.1190

    Article  CAS  Google Scholar 

  292. Lee HB, Kim JC, Lee SM (2009) Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res 32:655–659. https://doi.org/10.1007/s12272-009-1502-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  293. Li Z, Hong-qing W, Ruo-yun C (2005) Chemical constituents in roots of Dryopteris championii. Chin Tradit Herb Drug 36:177

    Google Scholar 

  294. Li XJ, Fu YJ, Luo M, Wang W, Zhang L, Zhao CJ, Zu YG (2012) Preparative separation of dryofragin and aspidin BB from Dryopteris fragrans extracts by macroporous resin column chromatography. J Pharm Biomed Anal 61:199–206. https://doi.org/10.1016/j.jpba.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  295. Liu X, Liu J, Jiang T, Zhang L, Huang Y, Wan J, Song G, Lin H, Shen Z, Tang C (2018) Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schott. J Ethnopharmacol 226:36–43. https://doi.org/10.1016/j.jep.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  296. Lounasmaa M, Karjalainen A, Widen CJ, Huhtikangas A (1972) Mass spectral studies on some naturally occurring phloroglucinols derivatives. Part III. The mass spectra of some mono- and bicyclic phloroglucinol derivatives from rhizomes of different Dryopteris species. Acta Chem Scand 26:89–101

    Article  CAS  PubMed  Google Scholar 

  297. Molodozhnikov LM, Ban’kovskii AI, Sergeev NM, Shreter NM (1971) Derivatives of phloroglucinol from Dryopteris fragrans (L.) Schott. Khimiko-Farmatseveticheskii Zhurnal 5:32–36

    Google Scholar 

  298. Na M, Jang J, Min BS, Lee SJ, Lee MS, Kim BY, Oh WK, Ahn JS (2006) Fatty acid synthase inhibitory activity of acylphloroglucinols isolated from Dryopteris crassirhizoma. Bioorg Med Chem Lett 16:4738–4742. https://doi.org/10.1016/j.bmcl.2006.07.018

    Article  CAS  PubMed  Google Scholar 

  299. Patama TT, Widen CJ (1991) Phloroglucinol derivatives from Dryopteris fusco-atra and D. hawaiiensis. Phytochemistry 30:3305–3310. https://doi.org/10.1016/0031-9422(91)83198-T

    Article  CAS  Google Scholar 

  300. Phong NV, Oanh VT, Yang SY, Choi JS, Min BS, Kim JA (2021) PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: kinetic properties and molecular docking simulation. Int J Biol Macromol 188:719–728. https://doi.org/10.1016/j.ijbiomac.2021.08.091

    Article  CAS  PubMed  Google Scholar 

  301. Tryon R, Widén C-J, Huhtikangas A, Lounasmaa M (1973) Phloroglucinol derivatives in Dryopteris parallelogramma and D. patula. Phytochemistry 12:683–687. https://doi.org/10.1016/S0031-9422(00)84464-7

    Article  CAS  Google Scholar 

  302. Wang J, Yan YT, Fu SZ, Peng B, Bao LL, Zhang YL, Hu JH, Zeng ZP, Geng DH, Gao ZP (2017) Anti-influenza virus (H5N1) activity screening on the phloroglucinols from rhizomes of Dryopteris crassirhizoma. Molecules 22:431. https://doi.org/10.3390/molecules22030431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  303. Widén CJ, von Euw J, Reichstein T (1970) Trispara-aspidin, ein neues phloroglucid aus dem farn Dryopteris remota (A. Br.) Hayek. Helv Chim Acta 53:2176–2188. https://doi.org/10.1002/hlca.19700530830

    Article  Google Scholar 

  304. Wollenweber E, Stevens JF, Ivanic M, Deinzer ML (1998) Acylphloroglucinols and flavonoid aglycones produced by external glands on the leaves of two dryopteris ferns and Currania robertiana. Phytochemistry 48:931–939. https://doi.org/10.1016/S0031-9422(97)01003-0

    Article  CAS  Google Scholar 

  305. Yuk HJ, Kim JY, Sung YY, Kim DS (2020) Phloroglucinol derivatives from Dryopteris crassirhizoma as potent xanthine oxidase inhibitors. Molecules 26:122. https://doi.org/10.3390/molecules26010122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  306. Amin S, Ullah B, Ali M, Rauf A, Khan H, Uriarte E, Sobarzo-Sánchez E (2019) Potent in vitro α-glucosidase inhibition of secondary metabolites derived from Dryopteris cycadina. Molecules 24:427. https://doi.org/10.3390/molecules24030427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  307. Kang WY, Li CQ, Ji ZQ (2011) A new carbamic acid from Dryopteris wallichiana. Chem Nat Compd 47:91–93. https://doi.org/10.1007/s10600-011-9837-0

    Article  CAS  Google Scholar 

  308. Chang X, Li W, Koike K, Wu L, Nikaido T (2006) Phenolic constituents from the rhizomes of Dryopteris crassirhizoma. Chem Pharm Bull 54:748–750. https://doi.org/10.1248/cpb.54.748

    Article  CAS  Google Scholar 

  309. Feng W, Cao X, Zheng X, Kuang H (2005) A new flavanone from Dryopteris sublaeta. Yao Xue Xue Bao 40:443–446

    CAS  PubMed  Google Scholar 

  310. Yim NH, Lee JJ, Lee B, Li W, Ma JY (2019) Antiplatelet activity of acylphloroglucinol derivatives isolated from Dryopteris crassirhizoma. Molecules 24:2212. https://doi.org/10.3390/molecules24122212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  311. Ishaque M, Bibi Y, Ayoubi S, Masood S, Nisa S, Qayyum A (2021) Iriflophenone-3-C-β-d glucopyranoside from Dryopteris ramosa (Hope) C. Chr. with promising future as a natural antibiotic for gastrointestinal tract infections. Antibiotics 10:1128. https://doi.org/10.3390/antibiotics10091128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  312. Bing P, Zu-ping Z, Ping L, Wei H, Hong W, Zeng-ping G (2013) A new chromone glycoside from Dryopteris fragrans. Chinese Herbal Med 44:2347–2349

    Google Scholar 

  313. Peng B, Bai RF, Li P, Han XY, Wang H, Zhu CC, Zeng ZP, Chai XY (2016) Two new glycosides from Dryopteris fragrans with anti-inflammatory activities. J Asian Nat Prod Res 18:59–64. https://doi.org/10.1080/10286020.2015.1121853

    Article  CAS  PubMed  Google Scholar 

  314. Imperato F (2008) A new flavone glucoside, apigenin 7-O-glucoside 4′-acetate and a New fern constituent, quercetin 3-O-rhamnoside-7-O-glucoside from Dryopteris villarii. Am Fern J 98:251–253

    Article  Google Scholar 

  315. Imperato F (2007) Three new flavonoid glycosides, kaempferol 3-O-(caffeoylrhamnoside), apigenin 4′-O- (caffeoylglucoside) and 4′-O-(feruloylglucoside) from Dryopteris villarii. Am Fern J 97:233–236

    Article  Google Scholar 

  316. Ali M, Khan SA, Rauf A, Khan H, Shah MR, Ahmad M, Mubarak MS, Ben Hadda T (2015) Characterization and antinociceptive activity (in vivo) of kempferol-3,4′-di-O-α-L-rhamnopyranoside isolated from Dryopteris cycadina. Med Chem Res 24:3218–3229. https://doi.org/10.1007/s00044-015-1373-1

    Article  CAS  Google Scholar 

  317. Amin S, Ullah B, Ali M, Khan H, Rauf A, Khan SA, Sobarzo-Sánchez E (2020) In Vitro α-glucosidase inhibition and computational studies of kaempferol derivatives from Dryopteris cycanida. Curr Top Med Chem 20:731–737. https://doi.org/10.2174/1568026620666200130161033

    Article  CAS  PubMed  Google Scholar 

  318. Feng W, Cao X, Kuang H, Zheng X (2007) Flavanone O-glycosides from the rhizomes of Dryopteris sublaeta. Yao Xue Xue Bao 42:867–871

    CAS  PubMed  Google Scholar 

  319. Kuang H, Zhang Y, Li G, Zeng W, Wang H, Song Q (2008) A new phenolic glycoside from the aerial parts of Dryopteris fragrans. Fitoterapia 79:319–320. https://doi.org/10.1016/j.fitote.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  320. Kuang H, Sun C, Zhang Y, Zhang Y, Chen D, Yang B, Xia Y (2009) Three drimane sesquiterpene glucoside from the aerial parts of Dryopteris fragrans (L.) schot. Fitoterapia 80:134–137. https://doi.org/10.1016/j.fitote.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  321. Wei-sheng F, Xin-wei C, Hai-xue K, Xiao-ke Z (2005) A new stilbene glycoside from Dryopteris sublaeta. Acta Pharm Sin 40:1131–1134

    Google Scholar 

  322. Ishaque M, Bibi Y, Masood S, al Ayoubi S, Qayyum A, Nisa S, Ahmed W (2022) Xanthone C-glycosides isomers purified from Dryopteris ramosa (Hope) C. Chr. with bactericidal and cytotoxic prospects. Saudi J Biol Sci 29:1191–1196. https://doi.org/10.1016/j.sjbs.2021.09.047

    Article  CAS  PubMed  Google Scholar 

  323. Zhu CC, Peng B, Zeng ZP, Han XY, Wang H, Wang TY (2021) A new phloroglucinol compound from Dryopteris fragrans. Zhongguo Zhong Yao Za Zhi 46:388–390

    PubMed  Google Scholar 

  324. Puri HS, Widén CJ, Lounasmaa M (1976) Phloroglucinol derivatives in Dryopteris chrysocoma. Phytochemistry 15:343–344. https://doi.org/10.1016/S0031-9422(00)89031-7

    Article  CAS  Google Scholar 

  325. Socolsky C, Domínguez L, Asakawa Y, Bardón A (2012) Unusual terpenylated acylphloroglucinols from Dryopteris wallichiana. Phytochemistry 80:115–122. https://doi.org/10.1016/j.phytochem.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  326. Widen CJ, Ayras P, Neuvonen K, Reichstein T (1993) New phloroglucinol derivatives in Dryopteris pulvinulifera and D. subtriangularis (Pteridophyta, Dryopteridaceae). Ann Bot Fenn 30:285–297

    CAS  Google Scholar 

  327. Yang S, Chen W, Shan F, Jia X, Deng R, Tang C, Shen Z (2017) Antifungal activity of aspidin BB from Dryopteris fragrans against Trichophyton rubrum involved inhibition of ergosterol biosynthesis. Chinese Herbal Med 9:63–68. https://doi.org/10.1016/S1674-6384(17)60077-7

    Article  Google Scholar 

  328. Widén CJ, Fraser-Jenkins CR, Reichstein T (1997) New phloroglucinol derivatives in Dryopteris subimpressa (Pteridophyta, Dryopteridaceae). Ann Bot Fenn 34:21–26

    Google Scholar 

  329. Fuchino H, Nakamura H, Wada H, Hakamatsuka T, Tanaka N (1997) Chemical and chemotaxonomical studies of ferns. Part XCI. two new acyl-phloroglucinols from Dryopteris atrata. Chem Pharm Bull 45:1101–1102. https://doi.org/10.1248/cpb.45.1101

    Article  CAS  Google Scholar 

  330. Penttila A, Sundman J (1963) Phloraspyron and phloraspidinol, new phloroglucinol derivatives from Dryopteris Ferns. Acta Chem Scand 17:1866–1890

    Article  Google Scholar 

  331. Su Y, Wan D, Song W (2016) Dryofragin inhibits the migration and invasion of human osteosarcoma U2OS cells by suppressing MMP-2/9 and elevating TIMP-1/2 through PI3K/AKT and p38 MAPK signaling pathways. Anti-Cancer Drugs 27:660–668. https://doi.org/10.1097/CAD.0000000000000381

    Article  CAS  PubMed  Google Scholar 

  332. Hisada S, Shiraishi K, Inagaki I (1972) Phloroglucinol derivatives of Dryopteris dickinsii and some related ferns. Phytochemistry 11:2881–2882. https://doi.org/10.1016/S0031-9422(00)86531-0

    Article  CAS  Google Scholar 

  333. Chen NH, Qian YR, Li W, Zhang YB, Zhou YD, Li GQ, Li YL, Wang GC (2017) Six new acylphloroglucinols from Dryopteris championii. Chem Biodivers 14:e1700001. https://doi.org/10.1002/cbdv.201700001

    Article  CAS  Google Scholar 

  334. Hou B, Zhang YM, Liao HY, Fu F, Li DD, Zhao X, Qi JX, Yang W, Xiao GF, Yang L, Zuo ZY, Wang L, Zhang XL, Bai F, Yang L, Gao GF, Song H, Hu JM, Shang WJ, Zhou J (2022) Target-based virtual screening and LC/MS-guided isolation procedure for identifying phloroglucinol-terpenoid inhibitors of SARS-CoV-2. J Nat Prod 85:327–336. https://doi.org/10.1021/acs.jnatprod.1c00805

    Article  CAS  PubMed  Google Scholar 

  335. Yan-long Z, Hai-yan F, Ying-ying Z, Qing-yu S, Wen-hua X, Hai-xue K (2008) Chemical components from Dryopteris fragrans and their cytotoxicity. Chin Tradit Herb Drug 39:648–651

    Google Scholar 

  336. Zhong ZC, Zhao DD, Liu ZD, Jiang S, Zhang YL (2017) A new human cancer cell proliferation inhibition sesquiterpene, dryofraterpene A, from medicinal plant Dryopteris fragrans (L.). Schott Mol 22:180. https://doi.org/10.3390/molecules22010180

    Article  CAS  Google Scholar 

  337. Shiojima K, Arai Y, Ageta H (1990) Seasonal fluctuation of triterpenoid constituents from dried leaflets of Dryopteris crassirhizoma. Phytochemistry 29:1079–1082. https://doi.org/10.1016/0031-9422(90)85406-6

    Article  CAS  Google Scholar 

  338. Sureshkumar J, Silambarasan R, Bharati KA, Krupa J, Amalraj S, Ayyanar M (2018) A review on ethnomedicinally important pteridophytes of India. J Ethnopharmacol 219:269–287. https://doi.org/10.1016/j.jep.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  339. Maroyi A (2017) Utilization of pteridophytes as herbal medicines in sub-Saharan Africa. In: Neffati M, Najjaa H, Máthé Á (eds) Medicinal and aromatic plants of the world - Africa. Springer, Dordrecht, pp 383–408

    Google Scholar 

  340. Kumar R, Viktorova J, Krizkovska B, Lipov J, Ruml T (2021) Structural diversity and biological activities of secondary metabolites isolated from the genus Selaginella. Phytochem Rev 20:1209–1243. https://doi.org/10.1007/s11101-021-09743-7

    Article  CAS  Google Scholar 

  341. Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21:752–772. https://doi.org/10.1039/b409720n

    Article  CAS  PubMed  Google Scholar 

  342. Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 8:97–101. https://doi.org/10.1097/00001756-199612200-00020

    Article  CAS  PubMed  Google Scholar 

  343. Liang YQ, Tang XC (2004) Comparative effects of huperzine A, donepezil, and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Lett 361:56–59. https://doi.org/10.1016/j.neulet.2003.12.071

    Article  CAS  PubMed  Google Scholar 

  344. Raves ML, Harel M, Pang YP, Silman I, Kozikowski AP, Sussman JL (1997) Structure of acetylcholinesterase complexed with the nootropic alkaloid,(−)-huperzine A. Nat Struct Mol Biol 4:57–63. https://doi.org/10.1038/nsb0197-57

    Article  CAS  Google Scholar 

  345. Ou LY, Tang XC, Cai JX (2001) Effect of huperzine A on working memory in reserpine- or yohimbine-treated monkeys. Eur J Pharmacol 433:151–156. https://doi.org/10.1016/S0014-2999(01)01500-X

    Article  CAS  PubMed  Google Scholar 

  346. Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G (2002) Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Zhonghua Yi Xue Za Zhi 82:941–944

    CAS  PubMed  Google Scholar 

  347. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374. https://doi.org/10.1038/nrc1075

    Article  CAS  PubMed  Google Scholar 

  348. Hausott B, Greger H, Marian B (2003) Naturally occurring lignans efficiently induce apoptosis in colorectal tumor cells. J Cancer Res Clin Oncol 129:569–576. https://doi.org/10.1007/s00432-003-0461-7

    Article  CAS  PubMed  Google Scholar 

  349. Li W, Tang GH, Yin S (2021) Selaginellins from the genus Selaginella: isolation, structure, biological activity, and synthesis. Nat Prod Rep 38:822–842. https://doi.org/10.1039/D0NP00065E

    Article  CAS  PubMed  Google Scholar 

  350. Nagai T, Myoda T, Nagashima T (2005) Antioxidative activities of water extract and ethanol extract from field horsetail (tsukushi) Equisetum arvense L. Food Chem 91:389–394. https://doi.org/10.1016/j.foodchem.2004.04.016

    Article  CAS  Google Scholar 

  351. do Monte FHM, dos Santos JG, Russi M, Bispo Lanziotti VMN, Leal LKAM, de Andrade Cunha GM (2004) Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol Res 49:239–243. https://doi.org/10.1016/j.phrs.2003.10.002

    Article  PubMed  Google Scholar 

  352. Čanadanović-Brunet JM, Ćetković GS, Djilas SM, Tumbas VT, Savatović SS, Mandić AI, Markov SL, Cvetković DD (2009) Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. Int J Food Sci Technol 44:269–278. https://doi.org/10.1111/j.1365-2621.2007.01680.x

    Article  CAS  Google Scholar 

  353. Olazarán-Santibañez F, Rivera G, Vanoye-Eligio V, Mora-Olivo A, Aguirre-Guzmán G, Ramírez-Cabrera M, Arredondo-Espinoza E (2021) Antioxidant and Antiproliferative activity of the ethanolic extract of Equisetum myriochaetum and molecular docking of its main metabolites (apigenin, kaempferol, and quercetin) on β-tubulin. Molecules 26:443. https://doi.org/10.3390/molecules26020443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  354. Ranjan V, Vats M, Gupta N, Sardana S (2014) Antidiabetic potential of the whole plant of Adiantum capillus veneris Linn. in streptozotocin-induced diabetic rats. Int J Pharmaceutical Clin Res 6:341–347

    Google Scholar 

  355. Pradeep Kumar R, Siddique S (2021) 22-Hydroxyhopane, a novel multitargeted phytocompound against SARS-CoV-2 from Adiantum latifolium Lam. Nat Prod Res:1–6. https://doi.org/10.1080/14786419.2021.1976177

  356. Vijayalakshmi A, Kiran Kumar Y (2013) Evaluation of goitrogenic and antithyroidal effect of the fern Adiantum capillus-veneris. Rev Bras 23:802–810. https://doi.org/10.1590/S0102-695X2013000500013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murthy, H.N., Yadav, G.G., Bhat, M.A. (2023). Bioactive Compounds of Pteridophytes. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_10

Download citation

Publish with us

Policies and ethics