Skip to main content

Finite Element Study of Effective Moduli of Nanoporous Materials Composed of Regular Gibson-Ashby Cells with Surface Stresses

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications

Part of the book series: Springer Proceedings in Materials ((SPM,volume 20))

Abstract

The homogenization problem is described for a nanoporous material having a regular structure of Gibson-Ashby cells. The nanoscale factor is taken into account according to the Gurtin-Murdoch model of surface stresses. The homogenization problems were solved numerically by the finite element method using the ANSYS package. Technologies for creating representative volumes consisting of thin and thick Gibson-Ashby cells are presented. The surface effect is modeled by shell elastic elements with the membrane stress option. Numerical calculation results of effective moduli of a nanoporous material depending on porosity and surface moduli are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hössinger-Kalteis A, Reiter M, Jerabek M, Major Z (2021) J Cell Plast 57:951

    Article  Google Scholar 

  2. Pan C, Han V, Lu J (2020) Appl Sci 10:6374

    Google Scholar 

  3. Srivastava V, Srivastava R (2014) J Mater Sci 49:2681

    Article  CAS  Google Scholar 

  4. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press

    Google Scholar 

  5. Gibson LJ, Ashby MF (1982) Proc Royal Soc Lond A 382:43

    Article  CAS  Google Scholar 

  6. Dillard T, N’guyen F, Maire E, et al (2005) Philos Mag 85:2147

    Google Scholar 

  7. Kornievsky AS, Nasedkin AV (2021) PNRPU Mech Bull (3):70

    Google Scholar 

  8. Kornievsky AS, Nasedkin AV (2022) Advanced materials modelling for mechanical, medical and biological applications. In: Altenbach H, Eremeyev VA, Galybin A, Vasiliev A (eds) Advanced structured materials, vol 155. Springer Nature, p 251

    Google Scholar 

  9. Koudelka P, Jiroušek O, Valach J (2011) Mach Technol Mater 1:39

    Google Scholar 

  10. Singh R, Lee PD, Lindley TC (2010) Acta Biomater 6:2342

    Article  CAS  Google Scholar 

  11. Duan HL, Wang J, Karihaloo BL et al (2006) Acta Mater 54:2983

    Article  CAS  Google Scholar 

  12. Eremeyev VA (2016) Acta Mech 227:29

    Article  Google Scholar 

  13. Gurtin ME, Murdoch AI (1975) Arch Rat Mech Anal 57:291

    Article  Google Scholar 

  14. Chen Q, Pugno N, Li ZY (2013) Phys E 53:217

    Article  CAS  Google Scholar 

  15. Fan T (2020) Int J Str Stab Dyn 20(7):2050073

    Article  Google Scholar 

  16. Fan T, Yang L (2017) Acta Mech 228:21

    Article  Google Scholar 

  17. Feng X-Q, Xia R, Li X, Li B (2009) Appl Phys Lett 94:011916

    Article  Google Scholar 

  18. Lu DJ, Xie YM, Li Q, Huang XD, Zhou SW (2014) Appl Phys Lett 105:101903

    Article  Google Scholar 

  19. Lu ZX, Zhang CG, Liu Q, Yang ZY (2011) J Phys D 44:395404

    Article  Google Scholar 

  20. Xia R, Li X, Qin Q, Liu J, Feng X-Q (2011) Nanotechnology 22:265714

    Article  Google Scholar 

  21. Nasedkin AV, Kornievsky AS (2017) Wave dynamics and composite mechanics for microstructured materials and metamaterials. In: Sumbatyan MA (ed) Advanced structured materials, vol 59. Springer Nature, p 107

    Google Scholar 

  22. Nasedkin AV, Kornievsky AS (2019) Wave dynamics, mechanics and physics of microstructured metamaterials. In: Sumbatyan MA (ed) Advanced structured materials, vol 109. Springer Nature, p 217

    Google Scholar 

  23. Javili A, Steinmann P (2010) Int J Solid Structs 47:3245

    Article  Google Scholar 

  24. Needs RJ, Godfrey MJ, Mansfield M (1991) Surf Sci 242:215

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Russian Foundation for Basic Research (project No. 20-31-90057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kornievsky, A., Nasedkin, A. (2023). Finite Element Study of Effective Moduli of Nanoporous Materials Composed of Regular Gibson-Ashby Cells with Surface Stresses. In: Parinov, I.A., Chang, SH., Soloviev, A.N. (eds) Physics and Mechanics of New Materials and Their Applications. Springer Proceedings in Materials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-031-21572-8_22

Download citation

Publish with us

Policies and ethics