Skip to main content

EvoAttack: An Evolutionary Search-Based Adversarial Attack for Object Detection Models

  • Conference paper
  • First Online:
Search-Based Software Engineering (SSBSE 2022)

Abstract

State-of-the-art deep neural networks in image classification, recognition, and detection tasks are increasingly being used in a range of real-world applications. Applications include those that are safety critical, where the failure of the system may cause serious harm, injuries, or even deaths. Adversarial examples are expected inputs that are maliciously modified such that the machine learning models fail to classify them correctly. While a number of evolutionary search-based approaches have been developed to generate adversarial examples against image classification problems, evolutionary search-based attacks against object detection algorithms remain unexplored. This paper explores how evolutionary search-based techniques can be used as a black-box, model- and data- agnostic approach to attack state-of-the-art object detection algorithms (e.g., RetinaNet and Faster R-CNN). A proof-of-concept implementation is provided to demonstrate how evolutionary search can generate adversarial examples that existing models fail to correctly process. We applied our approach to benchmark datasets, Microsoft COCO and Waymo Open Dataset, applying minor perturbations to generate adversarial examples that prevented correct model detections and classifications on areas of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  2. Chen, J., Su, M., Shen, S., Xiong, H., Zheng, H.: POBA-GA: perturbation optimized black-box adversarial attacks via genetic algorithm. Comput. Secur. 85, 89–106 (2019)

    Article  Google Scholar 

  3. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  4. Han, J.K., Kim, H., Woo, S.S.: Nickel to LEGO: using Foolgle to create adversarial examples to fool Google cloud speech-to-text API. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 2593–2595. Association for Computing Machinery, New York (2019)

    Google Scholar 

  5. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of the 24th International Conference on Software Engineering, ICSE 2002, pp. 547–550 (2002)

    Google Scholar 

  6. Kocić, J., Jovičić, N., Drndarević, V.: An end-to-end deep neural network for autonomous driving designed for embedded automotive platforms. Sensors 19(9), 2064 (2019)

    Article  Google Scholar 

  7. Langford, M.A., Cheng, B.H.C.: Enki: a diversity-driven approach to test and train robust learning-enabled systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 15(2), 1–32 (2021)

    Google Scholar 

  8. Langford, M.A., Cheng, B.H.C.: “Know what you know”: predicting behavior for learning-enabled systems when facing uncertainty. In: 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 78–89 (2021)

    Google Scholar 

  9. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Marie-Sainte, S.L., Alamir, M.B., Alsaleh, D., Albakri, G., Zouhair, J.: Enhancing credit card fraud detection using deep neural network. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2020. AISC, vol. 1229, pp. 301–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52246-9_21

    Chapter  Google Scholar 

  12. Alzantot, M., et al.: GenAttack: practical black-box attacks with gradient-free optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1111–1119 (2019)

    Google Scholar 

  13. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)

    Google Scholar 

  14. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  16. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  17. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

    Google Scholar 

  18. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  19. Nandita, G., Chandra, T.M.: Malicious host detection and classification in cloud forensics with DNN and SFLO approaches. Int. J. Syst. Assur. Eng. Manag. 1–13 (2021). https://doi.org/10.1007/s13198-021-01168-x

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  21. Rudd, E.M., Harang, R., Saxe, J.: MEADE: towards a malicious email attachment detection engine. In: 2018 IEEE International Symposium on Technologies for Homeland Security (HST), pp. 1–7 (2018)

    Google Scholar 

  22. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

    Article  Google Scholar 

  23. Vidnerová, P., Neruda, R.: Vulnerability of classifiers to evolutionary generated adversarial examples. Neural Netw. 127, 168–181 (2020)

    Article  MATH  Google Scholar 

  24. Wang, Y., Xu, W.: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis. Support Syst. 105, 87–95 (2018)

    Article  Google Scholar 

  25. Wei, X., Liang, S., Chen, N., Cao, X.: Transferable adversarial attacks for image and video object detection. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 954–960. AAAI Press (2019)

    Google Scholar 

  26. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)

    Google Scholar 

  27. Wu, C., Luo, W., Zhou, N., Xu, P., Zhu, T.: Genetic algorithm with multiple fitness functions for generating adversarial examples. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1792–1799 (2021)

    Google Scholar 

  28. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378 (2017)

    Google Scholar 

  29. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, K., Cheng, B.H.C. (2022). EvoAttack: An Evolutionary Search-Based Adversarial Attack for Object Detection Models. In: Papadakis, M., Vergilio, S.R. (eds) Search-Based Software Engineering. SSBSE 2022. Lecture Notes in Computer Science, vol 13711. Springer, Cham. https://doi.org/10.1007/978-3-031-21251-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21251-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21250-5

  • Online ISBN: 978-3-031-21251-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics