Skip to main content

A Novel Reverse Engineering Approach for Gene Regulatory Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

Abstract

Capturing the rules that govern a particular system can be useful in any field where the causes of its effects are unknown. Indeed, discovering the causes that produced a particular effect is extremely useful in fields such as biology. In this paper, a reverse engineering method based on machine learning is proposed. This method was used to replicate real world behaviour and use this knowledge to generate the relative Gene Regulatory Network. The datasets from the DREAM4 Challenge were used to validate this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, J.M., Brooks, M.D., Swift, J., Coruzzi, G.M.: Time-based systems biology approaches to capture and model dynamic gene regulatory networks. Ann. Rev. Plant Biol. 72(1) (2021). https://par.nsf.gov/biblio/10231631

  2. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems. Elsevier (2018)

    Google Scholar 

  3. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech. Syst. Sign. Process. 147, 107077 (2021). https://www.sciencedirect.com/science/article/pii/S0888327020304635

  4. Bai, Y., Chen, W., Chen, J., Guo, W.: Deep learning methods for solving linear inverse problems: Research directions and paradigms. Sign. Process. 177, 107729 (2020). https://www.sciencedirect.com/science/article/pii/S0165168420302723

  5. Chikofsky, E., Cross, J.: Reverse engineering and design recovery: a taxonomy. IEEE Softw. 7(1), 13–17 (1990)

    Article  Google Scholar 

  6. Cutello, V., Krasnogor, N., Nicosia, G., Pavone, M.: Immune algorithm versus differential evolution: A comparative case study using high dimensional function optimization. In: 8th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA), Vol. LNCS 4431, pp. 93–101 (2007)

    Google Scholar 

  7. Cutello, V., Morelli, G., Nicosia, G., Pavone, M., Scollo, G.: On discrete models and immunological algorithms for protein structure prediction. Nat. Comput. 10(1), 91–102 (2011). https://doi.org/10.1007/s11047-010-9196-y

  8. Flamary, R.: Astronomical image reconstruction with convolutional neural networks. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2468–2472 (2017)

    Google Scholar 

  9. Groetsch, C.W., Groetsch, C.: Inverse Problems in the Mathematical Sciences, Vol. 52. Springer (1993)

    Google Scholar 

  10. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory network inference: Data integration in dynamic models-a review. Biosystems 96(1), 86–103 (2009). https://www.sciencedirect.com/science/article/pii/S0303264708002608

  11. Huynh-Thu, V.A., Sanguinetti, G.: Gene regulatory network inference: an introductory survey. In: Gene Regulatory Networks, pp. 1–23. Springer (2019)

    Google Scholar 

  12. Kantarci, B., Labatut, V.: Classification of complex networks based on topological properties. In: 2013 International Conference on Cloud and Green Computing, pp. 297–304 (Sep 2013)

    Google Scholar 

  13. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nature Rev. Mol. Cell Biol. 9(10), 770–780 (2008). https://doi.org/10.1038/nrm2503

  14. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: Beyond analytical methods. IEEE Sign. Process. Magaz. 35(1), 20–36 (2018)

    Article  Google Scholar 

  15. Mata, A.S.d.: Complex networks: a mini-review. Brazilian J. Phys. 50(5), 658–672 (2020). https://doi.org/10.1007/s13538-020-00772-9

  16. Pilozzi, L., Farrelly, F.A., Marcucci, G., Conti, C.: Machine learning inverse problem for topological photonics. Commun. Phys. 1(1), 57 (2018). https://doi.org/10.1038/s42005-018-0058-8

  17. Rubiolo, M., Milone, D.H., Stegmayer, G.: Extreme learning machines for reverse engineering of gene regulatory networks from expression time series. Bioinformatics 34(7), 1253–1260 (2017). https://doi.org/10.1093/bioinformatics/btx730

  18. Shmulevich, I., Dougherty, E.R., Zhang, W.: Control of stationary behavior in probabilistic Boolean networks by means of structural intervention. J. Biol. Syst. 10(04), 431–445 (2002). https://doi.org/10.1142/S0218339002000706

  19. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley Publishing (2009)

    Google Scholar 

  20. Vauhkonen, M., Tarvainen, T., Lähivaara, T.: Inverse Problems, pp. 207–227. Springer International Publishing, Cham (2016), https://doi.org/10.1007/978-3-319-27836-0_12

  21. Yaman, F., Yakhno, V.G., Potthast, R.: A survey on inverse problems for applied sciences. Math. Prob. Eng., 976837 (2013). https://doi.org/10.1155/2013/976837

  22. Yang, Y., Yang, H.: Complex network-based time series analysis. Phys. A Stat. Mech. Appl. 387(5), 1381–1386 (2008). https://www.sciencedirect.com/science/article/pii/S0378437107011235

  23. Zhao, M., He, W., Tang, J., Zou, Q., Guo, F.: A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Brief. Bioinform. 22(5) (2021). https://doi.org/10.1093/bib/bbab009

  24. Zito, F., Cutello, V., Pavone, M.: Optimizing multi-variable time series forecasting using metaheuristics. In: 2022, 14th Metaheuristics International Conference (MIC), vol. LNCS (to appear), pp. 1–15 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pavone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zito, F., Cutello, V., Pavone, M. (2023). A Novel Reverse Engineering Approach for Gene Regulatory Networks. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics