Skip to main content

Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2022)

Abstract

Achieving at least some level of explainability requires complex analyses for many machine learning systems, such as common black-box models. We recently proposed a new rule-based learning system, SupRB, to construct compact, interpretable and transparent models by utilizing separate optimizers for the model selection tasks concerning rule discovery and rule set composition. This allows users to specifically tailor their model structure to fulfil use-case specific explainability requirements. From an optimization perspective, this allows us to define clearer goals and we find that—in contrast to many state of the art systems—this allows us to keep rule fitnesses independent. In this paper we investigate this system’s performance thoroughly on a set of regression problems and compare it against XCSF, a prominent rule-based learning system. We find the overall results of SupRB’s evaluation comparable to XCSF’s while allowing easier control of model structure and showing a substantially smaller sensitivity to random seeds and data splits. This increased control can aid in subsequently providing explanations for both training and final structure of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/rpreen/xcsf, https://doi.org/10.5281/zenodo.5806708.

  2. 2.

    https://github.com/heidmic/suprb, https://doi.org/10.5281/zenodo.6460701.

  3. 3.

    https://github.com/rpreen/xcsf/wiki/Python-Library-Usage.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2623–2631. Association for Computing Machinery, New York (2019). https://doi.org/10/gf7mzz

  2. Bacardit, J.: Pittsburgh genetics-based machine learning in the data mining era: representations, generalization, and run-time. Ph.D. thesis, PhD thesis, Ramon Llull University, Barcelona (2004)

    Google Scholar 

  3. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  4. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Brooks, T., Pope, D., Marcolini, M.: Airfoil self-noise and prediction (1989)

    Google Scholar 

  6. Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 905–911. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  7. Butz, M.V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1835–1842. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1068009.1068320

  8. Corani, G., Benavoli, A., Demšar, J., Mangili, F., Zaffalon, M.: Statistical comparison of classifiers through Bayesian hierarchical modelling. Mach. Learn. 106(11), 1817–1837 (2017). https://doi.org/10.1007/s10994-017-5641-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml

  10. Heider, M., Nordsieck, R., Hähner, J.: Learning classifier systems for self-explaining socio-technical-systems. In: Stein, A., Tomforde, S., Botev, J., Lewis, P. (eds.) Proceedings of LIFELIKE 2021 Co-located with 2021 Conference on Artificial Life (ALIFE 2021) (2021). https://ceur-ws.org/Vol-3007/

  11. Heider, M., Stegherr, H., Wurth, J., Sraj, R., Hähner, J.: Separating rule discovery and global solution composition in a learning classifier system. In: Genetic and Evolutionary Computation Conference Companion (GECCO 2022 Companion) (2022). https://doi.org/10.1145/3520304.3529014

  12. Kaya, H., Tüfekci, P.: Local and global learning methods for predicting power of a combined gas & steam turbine (2012)

    Google Scholar 

  13. Lanzi, P.L., Loiacono, D.: XCSF with neural prediction. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 2270–2276 (2006). https://doi.org/10.1109/CEC.2006.1688588

  14. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1505–1512. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1143997.1144243

  15. Liu, Y., Browne, W.N., Xue, B.: Absumption to complement subsumption in learning classifier systems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 410–418. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3321707.3321719

  16. Liu, Y., Browne, W.N., Xue, B.: A comparison of learning classifier systems’ rule compaction algorithms for knowledge visualization. ACM Trans. Evolut. Learn. Optim. 1(3), 10:1–10:38 (2021). https://doi.org/10/gn8gjt

  17. Liu, Y., Browne, W.N., Xue, B.: Visualizations for rule-based machine learning. Nat. Comput. (11), 1–22 (2021). https://doi.org/10.1007/s11047-020-09840-0

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Preen, R.J., Pätzel, D.: XCSF (2021). https://doi.org/10.5281/zenodo.5806708. https://github.com/rpreen/xcsf

  20. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global knowledge discovery in a supervised learning classifier system. In: ECAL 2013: The Twelfth European Conference on Artificial Life, pp. 110–117. MIT Press (2013). https://doi.org/10.7551/978-0-262-31709-2-ch017

  21. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012). https://doi.org/10/gg5vzx

  22. Tüfekci, P.: Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electri. Power Energy Syst. 60, 126–140 (2014). https://doi.org/10/gn9s2h

  23. Urbanowicz, R.J., Browne, W.N.: Applying LCSs. In: Introduction to Learning Classifier Systems. SIS, pp. 103–123. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55007-6_5

    Chapter  MATH  Google Scholar 

  24. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with statistical and visualization-guided knowledge discovery for Michigan-style learning classifier systems. IEEE Comput. Intell. Mag. 7(4), 35–45 (2012). https://doi.org/10.1109/MCI.2012.2215124

    Article  Google Scholar 

  25. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduction, review, and roadmap. J. Artif. Evolut. Appl. (2009)

    Google Scholar 

  26. Wilson, S.W.: Get Real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45027-0_11

    Chapter  Google Scholar 

  27. Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1(2/3), 211–234 (2002). https://doi.org/10.1023/a:1016535925043

    Article  MathSciNet  MATH  Google Scholar 

  28. Wilson, S.W.: Compact rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 197–208. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4_12

    Chapter  Google Scholar 

  29. Wu, Q., Ma, Z., Fan, J., Xu, G., Shen, Y.: A feature selection method based on hybrid improved binary quantum particle swarm optimization. IEEE Access 7, 80588–80601 (2019). https://doi.org/10/gnxcfb

  30. Wurth, J., Heider, M., Stegherr, H., Sraj, R., Hähner, J.: Comparing different metaheuristics for model selection in a supervised learning classifier system. In: Genetic and Evolutionary Computation Conference Companion (GECCO 2022 Companion) (2022). https://doi.org/10.1145/3520304.3529015

  31. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998). https://doi.org/10/dxm5c2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heider, M., Stegherr, H., Wurth, J., Sraj, R., Hähner, J. (2022). Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics