Skip to main content

Unit Cell Based Artificial Venus Flytrap

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

Nature’s “inventions” have inspired designers, researchers and engineers for centuries. Over the past 25 years, progressive improvements in analytical and manufacturing technologies allowed us to understand more and more biological principles and to apply them to engineered systems. In recent years, this has led to the advancement and use of metamaterials in bioinspired systems. These material systems, mostly based on unit cells, allow engineering systems to be equipped with ever-new nature-like capabilities. In this study, we use novel bending elements to create doubly curved surfaces that can snap from concave to convex like the lobes of a Venus flytrap. By connecting two of these surfaces using a central actuator unit cell, an artificial Venus flytrap based on unit cells can be created for the first time. In this study, the closing behavior and the force required for the movement are characterized. Based on these results, a suitable environmentally activated actuator will be selected to generate an autonomous and adaptive artificial Venus flytrap system that can be used as a gripper for autonomous systems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoldi, K., Vitelli, V., Christensen, J., van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017). https://doi.org/10.1038/natrevmats.2017.66

    Article  Google Scholar 

  2. Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research − materials with negative poisson’s ratio: a review. Adv. Eng. Mater. 18, 1847–1870 (2016). https://doi.org/10.1002/adem.201600053

    Article  Google Scholar 

  3. Lakes, R.: Foam structures with a negative poisson’s ratio. Science 235, 1038–1040 (1987). https://doi.org/10.1126/science.235.4792.1038

    Article  Google Scholar 

  4. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking! Adv. Mater. 12, 617–628 (2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:9%3c617:AID-ADMA617%3e3.0.CO;2-3

    Article  Google Scholar 

  5. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. 113(35), 9722–9727 (2016). https://doi.org/10.1073/pnas.1604838113

    Article  Google Scholar 

  6. Ou, J., Ma, Z., Peters, J., Vlavianos, N., Ishiii, H.: KinetiX–designing auxetic-inspired deformable material structures. Comput. Graph. 75, 72–81 (2018). https://doi.org/10.1016/j.cag.2018.06.003

    Article  Google Scholar 

  7. Westermeier, A.S., et al.: How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. Proc. Biol. Sci. 285, 1–10 (2018). https://doi.org/10.1098/rspb.2018.0012

    Article  Google Scholar 

  8. Poppinga, S., Bauer, U., Speck, T., Volkov, A.G.: Motile traps. In: Ellison, A., Adamec, L. (eds.) Carnivorous Plants: Physiology, Ecology, and Evolution, pp. 180–193. Oxford University Press (2018)

    Google Scholar 

  9. Poppinga, S., Kampowski, T., Metzger, A., Speck, O., Speck, T.: Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps. Beilstein J. Nanotechnol 7, 664–674 (2016). https://doi.org/10.3762/bjnano.7.59

    Article  Google Scholar 

  10. Poppinga, S., Joyeux, M.: Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa. Phys. Rev. E 84, 041928–041935 (2011). https://doi.org/10.1103/PhysRevE.84.041928

    Article  Google Scholar 

  11. Esser, F.J., Auth, P., Speck, T.: Artificial Venus flytraps: a research review and outlook on their importance for novel bioinspired materials systems. Front Robot AI 7, 75 (2020). https://doi.org/10.3389/frobt.2020.00075

    Article  Google Scholar 

  12. Esser, F., et al.: Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics. In: Martinez-Hernandez, U., et al. (eds.) Living Machines 2019. LNCS (LNAI), vol. 11556, pp. 114–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_10

    Chapter  Google Scholar 

  13. Lendlein, A., Balk, M., Tarazona, N.A., Gould, O.E.C.: Bioperspectives for shape-memory polymers as shape programmable, active materials. Biomacromolecules 20, 3627–3640 (2019). https://doi.org/10.1021/acs.biomac.9b01074

    Article  Google Scholar 

  14. Monzón, M.D., et al.: 4D printing: processability and measurement of recovery force in shape memory polymers. The Int. J. Adv. Manuf. Technol. 89(5–8), 1827–1836 (2016). https://doi.org/10.1007/s00170-016-9233-9

    Article  Google Scholar 

  15. Song, J.J., Chang, H.H., Naguib, H.E.: Biocompatible shape memory polymer actuators with high force capabilities. Eur. Polymer J. 67, 186–198 (2015). https://doi.org/10.1016/j.eurpolymj.2015.03.067

    Article  Google Scholar 

  16. Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034 (2002). https://doi.org/10.1002/1521-3773(20020617)41:12%3c2034:AID-ANIE2034%3e3.0.CO;2-M

    Article  Google Scholar 

  17. Jeong, H.Y., et al.: 3D printing of twisting and rotational bistable structures with tuning elements. Sci Rep 9, 324 (2019). https://doi.org/10.1038/s41598-018-36936-6

    Article  Google Scholar 

  18. Howell, L.L., Magleby, S.P., Olsen, B.M. (eds.): Handbook of Compliant Mechanisms. Wiley, Chichester, West Sussex, United Kingdom, Hoboken, New Jersey (2013)

    Google Scholar 

  19. Greenberg, H.C., Gong, M.L., Magleby, S.P., Howell, L.L.: Identifying links between origami and compliant mechanisms. Mech. Sci. 2, 217–225 (2011). https://doi.org/10.5194/ms-2-217-2011

    Article  Google Scholar 

  20. Lobontiu, N.: Compliant Mechanisms. CRC Press (2002)

    Google Scholar 

Download references

Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–EXC-2193/1–390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk J. Tauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tauber, F.J. et al. (2022). Unit Cell Based Artificial Venus Flytrap. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics