Skip to main content

Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

Graph convolutional network based methods that model the body-joints’ relations, have recently shown great promise in 3D skeleton-based human motion prediction. However, these methods have two critical issues: first, deep graph convolutions filter features within only limited graph spectrums, losing sufficient information in the full band; second, using a single graph to model the whole body underestimates the diverse patterns on various body-parts. To address the first issue, we propose adaptive graph scattering, which leverages multiple trainable band-pass graph filters to decompose pose features into richer graph spectrum bands. To address the second issue, body-parts are modeled separately to learn diverse dynamics, which enables finer feature extraction along the spatial dimensions. Integrating the above two designs, we propose a novel skeleton-parted graph scattering network (SPGSN). The cores of the model are cascaded multi-part graph scattering blocks (MPGSBs), building adaptive graph scattering on diverse body-parts, as well as fusing the decomposed features based on the inferred spectrum importance and body-part interactions. Extensive experiments have shown that SPGSN outperforms state-of-the-art methods by remarkable margins of \(13.8\%\), \(9.3\%\) and \(2.7\%\) in terms of 3D mean per joint position error (MPJPE) on Human3.6M, CMU Mocap and 3DPW datasets, respectively (The codes are available at https://github.com/MediaBrain-SJTU/SPGSN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mocap.cs.cmu.edu/.

References

  1. Andén, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process. 62(16), 4114–4128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR (Apr 2014)

    Google Scholar 

  4. Cai, Y., Huang, L., Wang, Y., Cham, T.-J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu, Y., Shen, X., Liu, D., Liu, J., Thalmann, N.M.: Learning progressive joint propagation for human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14

    Chapter  Google Scholar 

  5. Chen, G., Song, X., Zeng, H., Jiang, S.: Scene recognition with prototype-agnostic scene layout. IEEE Trans. Image Process. 29, 5877–5888 (2020)

    Article  MATH  Google Scholar 

  6. Chen, S., Liu, B., Feng, C., Vallespi-Gonzalez, C., Wellington, C.: 3d point cloud processing and learning for autonomous driving. IEEE Sig. Process. Mag. 38, 68–86 (2020)

    Article  Google Scholar 

  7. Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3d human motion prediction. In: CVPR (June 2020)

    Google Scholar 

  8. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured data. In: ICML (June 2016)

    Google Scholar 

  9. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11467–11476 (October 2021)

    Google Scholar 

  10. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS (Dec 2016)

    Google Scholar 

  11. Fan, L., Wang, W., Huang, S., Tang, X., Zhu, S.C.: Understanding human gaze communication by spatio-temporal graph reasoning. In: ICCV (Oct 2019)

    Google Scholar 

  12. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: ICCV, pp. 4346–4354 (December 2015)

    Google Scholar 

  13. Gama, F., Ribeiro, A., Bruna, J.: Diffusion scattering transforms on graphs. In: ICLR (May 2019)

    Google Scholar 

  14. Gama, F., Ribeiro, A., Bruna, J.: Stability of graph scattering transforms. In: NeurIPS, vol. 32 (December 2019)

    Google Scholar 

  15. Gao, F., Wolf, G., Hirn, M.: Geometric scattering for graph data analysis. In: ICML, pp. 2122–2131 (June 2019)

    Google Scholar 

  16. Gui, L.-Y., Wang, Y.-X., Liang, X., Moura, J.M.F.: Adversarial geometry-aware human motion prediction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 823–842. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_48

    Chapter  Google Scholar 

  17. Gui, L., Zhang, K., Wang, Y., Liang, X., Moura, J., Veloso, M.: Teaching robots to predict human motion. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Oct 2018)

    Google Scholar 

  18. Guo, X., Choi, J.: Human motion prediction via learning local structure representations and temporal dependencies. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2580–2587 (2019)

    Google Scholar 

  19. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (Dec 2017)

    Google Scholar 

  20. Hu, G., Cui, B., Yu, S.: Skeleton-based action recognition with synchronous local and non-local spatio-temporal learning and frequency attention. In: ICME (July 2019)

    Google Scholar 

  21. Hu, Y., Chen, S., Zhang, Y., Gu, X.: Collaborative motion prediction via neural motion message passing. In: CVPR (June 2020)

    Google Scholar 

  22. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: Stgat: Modeling spatial-temporal interactions for human trajectory prediction. In: ICCV, pp. 6272–6281 (2019)

    Google Scholar 

  23. Ioannidis, V.N., Chen, S., Giannakis, G.B.: Pruned graph scattering transforms. In: ICLR (Apr 2020)

    Google Scholar 

  24. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Article  Google Scholar 

  25. Jain, A., Zamir, A., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on spatio-temporal graphs. In: CVPR, pp. 5308–5317 (June 2016)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  27. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. In: ICML. pp. 2688–2697 (2018)

    Google Scholar 

  28. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (Apr 2017)

    Google Scholar 

  29. Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, S.H., Savarese, S.: Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks. arXiv preprint arXiv:1907.03395 (2019)

  30. Lee, S., Lim, J., Suh, I.H.: Progressive feature matching: Incremental graph construction and optimization. IEEE Trans. Image Process. 29, 6992–7005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lehrmann, A., Gehler, P., Nowozin, S.: Efficient nonlinear markov models for human motion. In: CVPR, pp. 1314–1321 (June 2014)

    Google Scholar 

  32. Li, C., Zhang, Z., Sun Lee, W., Hee Lee, G.: Convolutional sequence to sequence model for human dynamics. In: CVPR (June 2018)

    Google Scholar 

  33. Li, J., Yang, F., Tomizuka, M., Choi, C.: Evolvegraph: Multi-agent trajectory prediction with dynamic relational reasoning. NeurIPS (2020)

    Google Scholar 

  34. Li, M., Chen, S., Zhang, Y., Tsang, I.: Graph cross networks with vertex infomax pooling. In: NeurIPS, vol. 33, pp. 14093–14105 (2020)

    Google Scholar 

  35. Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In: CVPR (June 2020)

    Google Scholar 

  36. Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Multiscale spatio-temporal graph neural networks for 3d skeleton-based motion prediction. IEEE Trans. Image Process. 30, 7760–7775 (2021)

    Article  MathSciNet  Google Scholar 

  37. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. In: ICLR (May 2016)

    Google Scholar 

  38. Liu, Z., Su, P., Wu, S., Shen, X., Chen, H., Hao, Y., Wang, M.: Motion prediction using trajectory cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13299–13308 (October 2021)

    Google Scholar 

  39. Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., Van Gool, L.: Video object segmentation with episodic graph memory networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 661–679. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_39

    Chapter  Google Scholar 

  40. Mao, W., Liu, M., Salzmann, M.: History repeats itself: Human motion prediction via motion attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28

    Chapter  Google Scholar 

  41. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: ICCV (Oct 2019)

    Google Scholar 

  42. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  43. Martinez, J., Black, M., Romero, J.: On human motion prediction using recurrent neural networks. In: CVPR, pp. 4674–4683 (July 2017)

    Google Scholar 

  44. Min, Y., Wenkel, F., Wolf, G.: Scattering gcn: Overcoming oversmoothness in graph convolutional networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 14498–14508 (Dec 2020)

    Google Scholar 

  45. Min, Y., Wenkel, F., Wolf, G.: Geometric scattering attention networks. In: ICASSP, pp. 8518–8522 (2021)

    Google Scholar 

  46. Niepert, M., Ahmed, M., Kutzkovl, K.: Learning convolutional neural networks for graphs. In: ICML (June 2016)

    Google Scholar 

  47. Pan, C., Chen, S., Ortega, A.: Spatio-temporal graph scattering transform. In: ICLR (May 2021)

    Google Scholar 

  48. Pavlovic, V., Rehg, J.M., MacCormick, J.: Learning switching linear models of human motion. In: NeurIPS (2001)

    Google Scholar 

  49. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: ECCV, pp. 401–417 (2018)

    Google Scholar 

  50. Rizkallah, M., Su, X., Maugey, T., Guillemot, C.: Geometry-aware graph transforms for light field compact representation. IEEE Trans. Image Process. 29, 602–616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: CVPR (June 2019)

    Google Scholar 

  52. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: CVPR, pp. 1233–1240 (June 2013)

    Google Scholar 

  53. Sofianos, T., Sampieri, A., Franco, L., Galasso, F.: Space-time-separable graph convolutional network for pose forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11209–11218 (October 2021)

    Google Scholar 

  54. Tabassum, S., Pereira, F.S., Fernandes, S., Gama, J.: Social network analysis: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(5), e1256 (2018)

    Article  Google Scholar 

  55. Taylor, G., Hinton, G.: Factored conditional restricted Boltzmann machines for modeling motion style. In: ICML (June 2009)

    Google Scholar 

  56. Taylor, G., Hinton, G., Roweis, S.: Modeling human motion using binary latent variables. In: NeurIPS (December 2007)

    Google Scholar 

  57. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (Apr 2018)

    Google Scholar 

  58. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: ICCV, pp. 3332–3341 (Oct 2017)

    Google Scholar 

  59. Wang, W., Zhu, H., Dai, J., Pang, Y., Shen, J., Shao, L.: Hierarchical human parsing with typed part-relation reasoning. In: CVPR (June 2020)

    Google Scholar 

  60. Xu, C., Chen, S., Li, M., Zhang, Y.: Invariant teacher and equivariant student for unsupervised 3d human pose estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3013–3021 (2021)

    Google Scholar 

  61. Xu, C., Li, M., Ni, Z., Zhang, Y., Chen, S.: Groupnet: Multiscale hypergraph neural networks for trajectory prediction with relational reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6498–6507 (2022)

    Google Scholar 

  62. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (Feb 2018)

    Google Scholar 

  63. Zhang, J., Shen, F., Xu, X., Shen, H.T.: Temporal reasoning graph for activity recognition. IEEE Trans. Image Process. 29, 5491–5506 (2020)

    Article  MATH  Google Scholar 

  64. Zhang, X., Xu, C., Tian, X., Tao, D.: Graph edge convolutional neural networks for skeleton-based action recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 3047–3060 (2019)

    Article  Google Scholar 

  65. Zheng, C., Pan, L., Wu, P.: Multimodal deep network embedding with integrated structure and attribute information. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1437–1449 (2020)

    Article  Google Scholar 

  66. Zou, D., Lerman, G.: Graph convolutional neural networks via scattering. Appl. Comput. Harmon. Anal. 49(3), 1046–1074 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2020YFB1406801), the National Natural Science Foundation of China under Grant (62171276), 111 plan (BP0719010), STCSM (18DZ2270700, 21511100900), State Key Laboratory of UHD Video and Audio Production and Presentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siheng Chen or Ya Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3985 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Chen, S., Zhang, Z., Xie, L., Tian, Q., Zhang, Y. (2022). Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics