Skip to main content

Generalizable Patch-Based Neural Rendering

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13692))

Included in the following conference series:

Abstract

Neural rendering has received tremendous attention since the advent of Neural Radiance Fields (NeRF), and has pushed the state-of-the-art on novel-view synthesis considerably. The recent focus has been on models that overfit to a single scene, and the few attempts to learn models that can synthesize novel views of unseen scenes mostly consist of combining deep convolutional features with a NeRF-like model. We propose a different paradigm, where no deep visual features and no NeRF-like volume rendering are needed. Our method is capable of predicting the color of a target ray in a novel scene directly, just from a collection of patches sampled from the scene. We first leverage epipolar geometry to extract patches along the epipolar lines of each reference view. Each patch is linearly projected into a 1D feature vector and a sequence of transformers process the collection. For positional encoding, we parameterize rays as in a light field representation, with the crucial difference that the coordinates are canonicalized with respect to the target ray, which makes our method independent of the reference frame and improves generalization. We show that our approach outperforms the state-of-the-art on novel view synthesis of unseen scenes even when being trained with considerably less data than prior work. Our code is available at https://mohammedsuhail.net/gen_patch_neural_rendering/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural point-based graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 696–712. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_42

    Chapter  Google Scholar 

  2. Attal, B., Huang, J.B., Zollhöfer, M., Kopf, J., Kim, C.: Learning neural light fields with ray-space embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19819–19829 (2022)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5855–5864 (2021)

    Google Scholar 

  4. Burov, A., Nießner, M., Thies, J.: Dynamic surface function networks for clothed human bodies. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10754–10764 (2021)

    Google Scholar 

  5. Camahort, E., Lerios, A., Fussell, D.: Uniformly sampled light fields. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 117–130. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_11

    Chapter  Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: MaskGIT: masked generative image transformer. arXiv preprint arXiv:2202.04200 (2022)

  8. Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14124–14133 (2021)

    Google Scholar 

  9. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1993, pp. 279–288. Association for Computing Machinery (1993)

    Google Scholar 

  10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5948 (2019)

    Google Scholar 

  11. Chernyavskiy, A., Ilvovsky, D., Nakov, P.: Transformers: “the end of history” for NLP? arXiv preprint arXiv:2105.00813 (2021)

  12. Chibane, J., Bansal, A., Lazova, V., Pons-Moll, G.: Stereo radiance fields (SRF): learning view synthesis for sparse views of novel scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7911–7920 (2021)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Feng, B.Y., Varshney, A.: SIGNET: efficient neural representation for light fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14224–14233 (2021)

    Google Scholar 

  15. Flynn, J., et al.: DeepView: view synthesis with learned gradient descent. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2367–2376 (2019)

    Google Scholar 

  16. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7154–7164 (2019)

    Google Scholar 

  17. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1996)

    Google Scholar 

  18. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  19. Hedman, P., Alsisan, S., Szeliski, R., Kopf, J.: Casual 3D photography. ACM Trans. Graph. (TOG) 36(6), 1–15 (2017)

    Article  Google Scholar 

  20. Hedman, P., Kopf, J.: Instant 3D photography. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)

    Article  Google Scholar 

  21. Hu, R., Ravi, N., Berg, A.C., Pathak, D.: Worldsheet: wrapping the world in a 3D sheet for view synthesis from a single image. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12528–12537 (2021)

    Google Scholar 

  22. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 406–413 (2014)

    Google Scholar 

  23. Johari, M.M., Lepoittevin, Y., Fleuret, F.: GeoNeRF: generalizing nerf with geometry priors. arXiv preprint arXiv:2111.13539 (2021)

  24. Kellnhofer, P., Jebe, L.C., Jones, A., Spicer, R., Pulli, K., Wetzstein, G.: Neural lumigraph rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4287–4297 (2021)

    Google Scholar 

  25. Lassner, C., Zollhofer, M.: Pulsar: efficient sphere-based neural rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1440–1449 (2021)

    Google Scholar 

  26. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42 (1996)

    Google Scholar 

  27. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

    Google Scholar 

  28. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: Advances in Neural Information Processing Systems, vol. 33, pp. 15651–15663 (2020)

    Google Scholar 

  29. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: DIST: rendering deep implicit signed distance function with differentiable sphere tracing. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2019–2028 (2020)

    Google Scholar 

  30. Liu, Y., et al.: Neural rays for occlusion-aware image-based rendering. arXiv preprint arXiv:2107.13421 (2021)

  31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  32. Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  33. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, San Francisco, CA, USA, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc. (1981)

    Google Scholar 

  34. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. arXiv preprint arXiv:2111.13679 (2021)

  35. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  36. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  37. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

  38. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. CoRR (2022). http://arxiv.org/abs/2201.05989v1

  39. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: unsupervised learning of 3D representations from natural images. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7588–7597 (2019)

    Google Scholar 

  40. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3504–3515 (2020)

    Google Scholar 

  41. Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5589–5599 (2021)

    Google Scholar 

  42. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)

    Google Scholar 

  43. Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342 (2000)

    Google Scholar 

  44. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3D: large-scale learning and evaluation of real-life 3D category reconstruction. In: International Conference on Computer Vision (2021)

    Google Scholar 

  45. Google Research: Google scanned objects. https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/GoogleScannedObjects

  46. Riegler, G., Koltun, V.: Free view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 623–640. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_37

    Chapter  Google Scholar 

  47. Riegler, G., Koltun, V.: Stable view synthesis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12216–12225 (2021)

    Google Scholar 

  48. Rombach, R., Esser, P., Ommer, B.: Geometry-free view synthesis: transformers and no 3D priors. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14356–14366 (2021)

    Google Scholar 

  49. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  50. Rückert, D., Franke, L., Stamminger, M.: ADOP: approximate differentiable one-pixel point rendering. arXiv preprint arXiv:2110.06635 (2021)

  51. Sajjadi, M.S., et al.: Scene representation transformer: geometry-free novel view synthesis through set-latent scene representations. arXiv preprint arXiv:2111.13152 (2021)

  52. Schönberger, J.L., Hardmeier, H., Sattler, T., Pollefeys, M.: Comparative evaluation of hand-crafted and learned local features. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6959–6968 (2017)

    Google Scholar 

  53. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  54. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  55. Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 21–30. Association for Computing Machinery, New York (1996). https://doi.org/10.1145/237170.237196

  56. Shi, J., Tomasi: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600 (1994)

    Google Scholar 

  57. Shum, H., Kang, S.B.: Review of image-based rendering techniques. In: Visual Communications and Image Processing 2000, vol. 4067, pp. 2–13. SPIE (2000)

    Google Scholar 

  58. Shum, H.Y., Chan, S.C., Kang, S.B.: Image-Based Rendering. Springer, New York (2007). https://doi.org/10.1007/978-0-387-32668-9

    Book  MATH  Google Scholar 

  59. Sitzmann, V., Rezchikov, S., Freeman, W.T., Tenenbaum, J.B., Durand, F.: Light field networks: neural scene representations with single-evaluation rendering. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  60. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2437–2446 (2019)

    Google Scholar 

  61. Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Light field neural rendering. CoRR (2021). http://arxiv.org/abs/2112.09687v1

  62. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11358–11367 (2021)

    Google Scholar 

  63. Tewari, A., et al.: Advances in neural rendering. arXiv preprint arXiv:2111.05849 (2021)

  64. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  65. Trevithick, A., Yang, B.: GRF: learning a general radiance field for 3D representation and rendering. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15182–15192 (2021)

    Google Scholar 

  66. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  67. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)

  68. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690–4699 (2021)

    Google Scholar 

  69. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: SynSin: end-to-end view synthesis from a single image. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  70. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: NeX: real-time view synthesis with neural basis expansion. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8534–8543 (2021)

    Google Scholar 

  71. Xie, Y., et al.: Neural fields in visual computing and beyond (2021). https://neuralfields.cs.brown.edu/

  72. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  73. Yenamandra, T., et al.: i3DMM: deep implicit 3D morphable model of human heads. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12803–12813 (2021)

    Google Scholar 

  74. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Trans. Graph. (TOG) 38(6), 1–14 (2019)

    Article  Google Scholar 

  75. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. CoRR (2021). http://arxiv.org/abs/2112.05131v1

  76. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5752–5761 (2021)

    Google Scholar 

  77. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4578–4587 (2021)

    Google Scholar 

  78. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Suhail .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8139 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suhail, M., Esteves, C., Sigal, L., Makadia, A. (2022). Generalizable Patch-Based Neural Rendering. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics