Skip to main content

Compiler-Aware Neural Architecture Search for On-Mobile Real-time Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Deep learning-based super-resolution (SR) has gained tremendous popularity in recent years because of its high image quality performance and wide application scenarios. However, prior methods typically suffer from large amounts of computations and huge power consumption, causing difficulties for real-time inference, especially on resource-limited platforms such as mobile devices. To mitigate this, we propose a compiler-aware SR neural architecture search (NAS) framework that conducts depth search and per-layer width search with adaptive SR blocks. The inference speed is directly taken into the optimization along with the SR loss to derive SR models with high image quality while satisfying the real-time inference requirement. Instead of measuring the speed on mobile devices at each iteration during the search process, a speed model incorporated with compiler optimizations is leveraged to predict the inference latency of the SR block with various width configurations for faster convergence. With the proposed framework, we achieve real-time SR inference for implementing 720p resolution with competitive SR performance (in terms of PSNR and SSIM) on GPU/DSP of mobile platforms (Samsung Galaxy S21). Codes are available at link.

Y. Wu and Y. Gong–Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.tensorflow.org/mobile/tflite/

  2. https://github.com/alibaba/MNN

  3. https://pytorch.org/mobile/home

  4. Abdelfattah, M.S., Mehrotra, A., Dudziak, Ł., Lane, N.D.: Zero-cost proxies for lightweight NAS. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=0cmMMy8J5q

  5. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  6. Ahn, J.Y., Cho, N.I.: Neural architecture search for image super-resolution using densely constructed search space: DeCoNAS. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4829–4836. IEEE (2021)

    Google Scholar 

  7. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  8. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and simplifying one-shot architecture search. In: International Conference on Machine Learning, pp. 550–559 (2018)

    Google Scholar 

  9. Bengio, Y., Léonard, N., Courville, A.C.: Estimating or propagating gradients through stochastic neurons for conditional computation. CoRR abs/1308.3432 (2013), arxiv:1308.3432

  10. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  11. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Smash: one-shot model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344 (2017)

  12. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. ICLR (2019)

    Google Scholar 

  13. Chen, T., Moreau, T., et al.: TVM: an automated end-to-end optimizing compiler for deep learning. In: USENIX, pp. 578–594 (2018)

    Google Scholar 

  14. Cheng, G., Matsune, A., Li, Q., Zhu, L., Zang, H., Zhan, S.: Encoder-decoder residual network for real super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  15. Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. arXiv preprint arXiv:1901.07261 (2019)

  16. Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_6

    Chapter  Google Scholar 

  17. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  18. Dai, X., et al.: ChamNet: towards efficient network design through platform-aware model adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11398–11407 (2019)

    Google Scholar 

  19. Ding, M., et al.: HR-NAS: searching efficient high-resolution neural architectures with lightweight transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  20. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  21. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  22. Dong, P., Wang, S., et al.: RTMobile: beyond real-time mobile acceleration of RNNs for speech recognition. arXiv:2002.11474 (2020)

  23. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. ICLR (2018)

    Google Scholar 

  24. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  25. Gong, Y., et al.: Automatic mapping of the best-suited DNN pruning schemes for real-time mobile acceleration. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 27(5), 1–26 (2022)

    Google Scholar 

  26. Gong, Y., et al.: A privacy-preserving-oriented DNN pruning and mobile acceleration framework. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 119–124 (2020)

    Google Scholar 

  27. Guan, Y., Liu, N., Zhao, P., Che, Z., Bian, K., Wang, Y., Tang, J.: DAIS: automatic channel pruning via differentiable annealing indicator search (2020)

    Google Scholar 

  28. Guo, S., Wang, Y., Li, Q., Yan, J.: DMCP: differentiable Markov channel pruning for neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1539–1547 (2020)

    Google Scholar 

  29. Han, S., Shen, H., Philipose, M., Agarwal, S., Wolman, A., Krishnamurthy, A.: MCDNN: an approximation-based execution framework for deep stream processing under resource constraints. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 123–136, ACM (2016)

    Google Scholar 

  30. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  31. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1389–1397 (2017)

    Google Scholar 

  32. Huang, H., Shen, L., He, C., Dong, W., Huang, H., Shi, G.: Lightweight image super-resolution with hierarchical and differentiable neural architecture search. arXiv preprint arXiv:2105.03939 (2021)

  33. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  34. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2024–2032 (2019)

    Google Scholar 

  35. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 723–731 (2018)

    Google Scholar 

  36. Huynh, L.N., Lee, Y., Balan, R.K.: DeepMon: Mobile GPU-based deep learning framework for continuous vision applications. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 82–95. ACM (2017)

    Google Scholar 

  37. Ignatov, A., Timofte, R., Denna, M., Younes, A.: Real-time quantized image super-resolution on mobile NPUs, mobile AI 2021 challenge: report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2525–2534 (2021)

    Google Scholar 

  38. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231–239 (1991)

    Google Scholar 

  39. Jian, T., et al.: Radio frequency fingerprinting on the edge. IEEE Trans. Mob. Comput. 21, 4078–4093 (2021)

    Google Scholar 

  40. Jo, Y., Kim, S.J.: Practical single-image super-resolution using look-up table. In: CVPR (2021)

    Google Scholar 

  41. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  42. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  43. Lane, N.D., et al.: DeepX: a software accelerator for low-power deep learning inference on mobile devices. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks, p. 23. IEEE Press (2016)

    Google Scholar 

  44. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

  45. Lee, R., Venieris, S.I., Dudziak, L., Bhattacharya, S., Lane, N.D.: MobiSR: efficient on-device super-resolution through heterogeneous mobile processors. In: The 25th Annual International Conference on Mobile Computing and Networking, pp. 1–16 (2019)

    Google Scholar 

  46. Li, Y., Gu, S., Zhang, K., Van Gool, L., Timofte, R.: DHP: differentiable meta pruning via HyperNetworks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 608–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_36

    Chapter  Google Scholar 

  47. Li, Z., et al.: SS-auto: a single-shot, automatic structured weight pruning framework of DNNs with ultra-high efficiency. arXiv preprint arXiv:2001.08839 (2020)

  48. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  49. Lin, M., et al.: Zen-NAS: a zero-shot NAS for high-performance deep image recognition. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021 (2021)

    Google Scholar 

  50. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  51. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  52. Liu, H., Lu, Z., Shi, W., Tu, J.: A fast and accurate super-resolution network using progressive residual learning. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1818–1822. IEEE (2020)

    Google Scholar 

  53. Liu, S., et al.: EVSRNet: efficient video super-resolution with neural architecture search. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2480–2485 (2021). https://doi.org/10.1109/CVPRW53098.2021.00281

  54. Liu, Z., et al.: MetaPruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  55. Liu, Z.G., Mattina, M.: Learning low-precision neural networks without straight-through estimator (STE). arXiv preprint arXiv:1903.01061 (2019)

  56. Luo, X., Xie, Y., Zhang, Y., Qu, Y., Li, C., Fu, Y.: LatticeNet: towards lightweight image super-resolution with lattice block. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 272–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_17

    Chapter  Google Scholar 

  57. Ma, X., et al.: BLK-REW: a unified block-based DNN pruning framework using reweighted regularization method. arXiv preprint arXiv:2001.08357 (2020)

  58. Mao, H., Han, S., et al.: Exploring the regularity of sparse structure in convolutional neural networks. arXiv:1705.08922 (2017)

  59. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  60. Niu, W., et al.: PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. arXiv preprint arXiv:2001.00138 (2020)

  61. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  62. Shi, W., Caballero, J., Huszar, F., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  63. Song, D., Xu, C., Jia, X., Chen, Y., Xu, C., Wang, Y.: Efficient residual dense block search for image super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12007–12014 (2020)

    Google Scholar 

  64. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  65. Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S.: Pruning neural networks without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467 (2020)

  66. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1920–1927 (2013)

    Google Scholar 

  67. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  68. Vu, T., Van Nguyen, C., Pham, T.X., Luu, T.M., Yoo, C.D.: Fast and efficient image quality enhancement via Desubpixel convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  69. Wan, A., et al.: FBNetV2: differentiable neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12965–12974 (2020)

    Google Scholar 

  70. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: CVPR (2021)

    Google Scholar 

  71. Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., Kindermans, P.-J.: Neural predictor for neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_39

    Chapter  Google Scholar 

  72. Wen, W., Wu, C., et al.: Learning structured sparsity in deep neural networks. In: NeurIPS, pp. 2074–2082 (2016)

    Google Scholar 

  73. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10734–10742 (2019)

    Google Scholar 

  74. Wu, Y., Huang, Z., Kumar, S., Sukthanker, R.S., Timofte, R., Van Gool, L.: Trilevel neural architecture search for efficient single image super-resolution. arXiv preprint arXiv:2101.06658 (2021)

  75. Xu, M., Zhu, M., Liu, Y., Lin, F.X., Liu, X.: DeepCache: principled cache for mobile deep vision. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, pp. 129–144. ACM (2018)

    Google Scholar 

  76. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang, T.J., et al.: NetAdapt: platform-aware neural network adaptation for mobile applications. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300 (2018)

    Google Scholar 

  78. Yang, Z., et al.: CARs: continuous evolution for efficient neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1829–1838 (2020)

    Google Scholar 

  79. Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T.: DeepSense: a unified deep learning framework for time-series mobile sensing data processing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 351–360 (2017)

    Google Scholar 

  80. Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., Xin, J.: Understanding straight-through estimator in training activation quantized neural nets. arXiv preprint arXiv:1903.05662 (2019)

  81. Yu, J., et al.: Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv:1808.08718 (2018)

  82. Yu, J., Huang, T.: Autoslim: towards one-shot architecture search for channel numbers. arXiv preprint arXiv:1903.11728 (2019)

  83. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  84. Yuan, G., et al.: MEST: accurate and fast memory-economic sparse training framework on the edge. Adv. Neural Inf. Process. Syst. 34, 20838–20850 (2021)

    Google Scholar 

  85. Zhan, Z., et al.: Achieving on-mobile real-time super-resolution with neural architecture and pruning search. In: ICCV (2021)

    Google Scholar 

  86. Zhang, T., et al.: A unified DNN weight pruning framework using reweighted optimization methods. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 493–498. IEEE (2021)

    Google Scholar 

  87. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  88. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  89. Zhang, Y., Wang, H., Qin, C., Fu, Y.: Aligned structured sparsity learning for efficient image super-resolution. Adv. Neural Inf. Process. Syst. 34, 2695–2706 (2021)

    Google Scholar 

  90. Zhang, Y., Wang, H., Qin, C., Fu, Y.: Learning efficient image super-resolution networks via structure-regularized pruning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  91. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2018)

    Google Scholar 

  92. Zhou, D., et al.: EcoNAS: finding proxies for economical neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11396–11404 (2020)

    Google Scholar 

  93. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

  94. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgements

The research reported here was funded in whole or in part by the Army Research Office/Army Research Laboratory via grant W911-NF-20-1-0167 to Northeastern University. Any errors and opinions are not those of the Army Research Office or Department of Defense and are attributable solely to the author(s). This research is also partially supported by National Science Foundation CCF-1937500 and CNS-1909172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 345 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2022). Compiler-Aware Neural Architecture Search for On-Mobile Real-time Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics