Skip to main content

Automating Process Discovery Through Meta-learning

  • Conference paper
  • First Online:
Cooperative Information Systems (CoopIS 2022)

Abstract

Analyzing event logs generated during the execution of digital processes, organizations can monitor the behavior of dysfunctional or unspecified processes. For achieving the most refined results, high-quality and up-to-date process models are required. However, the selection of the proper process discovery algorithm is often addressed by human experts that can relate quality criteria, event logs behavior, and discovery techniques. Exploiting a meta-learning approach, we created a procedure that identifies the optimal discovery technique based on a user-defined balance of quality metrics. Our experiments exploited 1091 event logs representing extensive possible business process behaviors. Given a set of available algorithms, we obtained an F-score of 0.76 for recommending the discovery algorithm that maximizes quality criteria. Moreover, our method supports a more in-depth investigation of the process discovery problem by mapping log behavior and discovery techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gbrltv/process_discovery_meta_learning.

  2. 2.

    https://www.tf-pm.org/competitions-awards/discovery-contest.

References

  1. van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Van der Aalst, W.M., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87 (2010). https://doi.org/10.1007/s10270-008-0106-z

    Article  Google Scholar 

  3. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Article  Google Scholar 

  4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-1214-x

    Article  Google Scholar 

  5. Back, C.O., Debois, S., Slaats, T.: Entropy as a measure of log variability. J. Data Semant. 8(2), 129–156 (2019)

    Article  Google Scholar 

  6. Barbon Junior, S., Ceravolo, P., Damiani, E., Marques Tavares, G.: Evaluating trace encoding methods in process mining. In: Bowles, J., Broccia, G., Nanni, M. (eds.) DataMod 2020. LNCS, vol. 12611, pp. 174–189. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70650-0_11

    Chapter  Google Scholar 

  7. Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: increasing speed while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings of the International Workshop on Algorithms Theories for the Analysis of Event Data 2019 ATAED@Petri Nets/ACSD 2019. CEUR Workshop Proceedings, vol. 2371, pp. 87–103. CEUR-WS.org (2019)

    Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  9. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(01), 1440001 (2014)

    Article  Google Scholar 

  10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_19

    Chapter  Google Scholar 

  11. Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online process mining: a concept drift perspective. IEEE Trans. Serv. Comput. 15, 2473–2489 (2020)

    Article  Google Scholar 

  12. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)

    Article  Google Scholar 

  13. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)

    Article  Google Scholar 

  14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_6

    Chapter  Google Scholar 

  17. Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex is your classification problem? A survey on measuring classification complexity. ACM Comput. Surv. 52(5), 1–34 (2019)

    Article  Google Scholar 

  18. Mendling, J., Depaire, B., Leopold, H.: Theory and practice of algorithm engineering (2021)

    Google Scholar 

  19. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_16

    Chapter  Google Scholar 

  20. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  21. Pérez-Alfonso, D., Yzquierdo-Herrera, R., Lazo-Cortés, M.: Recommendation of process discovery algorithms: a classification problem. Res. Comput. Sci 61, 33–42 (2013)

    Google Scholar 

  22. Pourbafrani, M., van der Aalst, W.M.P.: Extracting process features from event logs to learn coarse-grained simulation models. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 125–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_8

    Chapter  Google Scholar 

  23. Ribeiro, J., Carmona, J.: A method for assessing parameter impact on control-flow discovery algorithms, pp. 83–96. CEUR-WS.org (2015)

    Google Scholar 

  24. Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_5

    Chapter  Google Scholar 

  25. Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15, pp. 65–118. Elsevier (1976)

    Google Scholar 

  26. dos Santos Garcia, C., et al.: Process mining techniques and applications a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)

    Article  Google Scholar 

  27. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  28. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  29. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  30. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: ProDiGen: mining complete, precise and minimal structure process models with a genetic algorithm. Inf. Sci. 294, 315–333 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Wong, R.K., Ding, J., Guo, Q., Wen, L.: Efficient selection of process mining algorithms. IEEE Trans. Serv. Comput. 6(4), 484–496 (2013)

    Article  Google Scholar 

  32. Weijters, A., Aalst, W., Medeiros, A.: Process mining with the heuristics miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology, Eindhoven (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Marques Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tavares, G.M., Junior, S.B., Damiani, E. (2022). Automating Process Discovery Through Meta-learning. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2022. Lecture Notes in Computer Science, vol 13591. Springer, Cham. https://doi.org/10.1007/978-3-031-17834-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17834-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17833-7

  • Online ISBN: 978-3-031-17834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics