Skip to main content

Next-Activity Prediction for Non-stationary Processes with Unseen Data Variability

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing (EDOC 2022)

Abstract

Predictive Process Monitoring (PPM) enables organizations to predict future states of ongoing process instances such as the remaining time, the outcome, or the next activity. A process in this context represents a coordinated set of activities that are enacted by a process engine in a specific order. The underlying source of data for PPM are event logs (ex post) or event streams (runtime) emitted for each activity. Although plenty of methods have been proposed to leverage event logs/streams to build prediction models, most works focus on stationary processes, i.e., the methods assume the range of data variability encountered in the event log/stream to remain the same over time. Unfortunately, this is not always the case as deviations from the expected process behaviour might occur quite frequently and updating prediction models becomes inevitable eventually. In this paper we investigate non-stationary processes, i.e., the impact of unseen data variability in event streams on prediction models from a structural and behavioural point of view. Strategies and methods are proposed to incorporate unknown data variability and to update recurrent neural network based models continuously in order to accommodate changing process behaviour. The approach is prototypically implemented and evaluated based on real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/auroeur/kronos.

  2. 2.

    https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.

  3. 3.

    https://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  4. 4.

    https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

References

  1. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  2. Hancock, J.T., Khoshgoftaar, T.M.: Survey on categorical data for neural networks. J. Big Data 7(1), 1–41 (2020). https://doi.org/10.1186/s40537-020-00305-w

    Article  Google Scholar 

  3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  4. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: functionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)

    Article  Google Scholar 

  5. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. In: Services Computing, pp. 1–8 (2017)

    Google Scholar 

  6. Márquez-Chamorro, A.E., Nepomuceno-Chamorro, I.A., Resinas, M., Ruiz-Cortés, A.: Updating prediction models for predictive process monitoring. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) Advanced Information Systems Engineering. Lecture Notes in Computer Science, vol. 13295, pp. 304–318. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_18

    Chapter  Google Scholar 

  7. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)

    Article  Google Scholar 

  8. Pauwels, S., Calders, T.: Incremental predictive process monitoring: the next activity case. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 123–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_10

    Chapter  Google Scholar 

  9. Polato, M., Sperduti, A., Burattin, A., Leoni, M.D.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018)

    Article  Google Scholar 

  10. Rinderle-Ma, S., Mangler, J.: Process automation and process mining in manufacturing. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_1

    Chapter  Google Scholar 

  11. Rinderle-Ma, S., Winter, K.: Predictive compliance monitoring in process-aware information systems: state of the art, functionalities, research directions. Technical report arXiv:2205.05446 (2022). https://doi.org/10.48550/ARXIV.2205.05446

  12. Rizzi, W., Di Francescomarino, C., Ghidini, C., Maggi, F.M.: How do i update my model? on the resilience of predictive process monitoring models to change. Knowl. Inf. Syst. 64, 1385–1416 (2022). https://doi.org/10.1007/s10115-022-01666-9

    Article  Google Scholar 

  13. Sak, H., Senior, A., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128 (2014)

  14. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG), GRK 2201 and by the Austrian Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Production (CDP) under the contract number 881843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amolkirat Singh Mangat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangat, A.S., Rinderle-Ma, S. (2022). Next-Activity Prediction for Non-stationary Processes with Unseen Data Variability. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science, vol 13585. Springer, Cham. https://doi.org/10.1007/978-3-031-17604-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17604-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17603-6

  • Online ISBN: 978-3-031-17604-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics