Skip to main content

What Is a Task and How Do You Know If You Have One or More?

  • Chapter
  • First Online:
Experimental Psychology

Abstract

The burgeoning interest in how voluntary actions are organized into goal-based behaviors has produced a rich body of data showing that task representations are complex, integrating not only stimulus and response information but also internal (e.g., goals and relationships among actions) and external (e.g., task-irrelevant stimuli) context. The dominant description of task representations is the task set, a collection of SR associations, whose presence is inferred primarily through task-switch costs. However, we argue that this approach has serious limitations that are often ignored. First, task switch costs likely reflect numerous processes, including those relating to attention and inhibition, that vary across experimental procedures and complicate their interpretation. Second, the switch cost measure is coarse in that it groups transitions into a small number (usually two) of categories. As we demonstrate empirically, this procedure can produce misleading results. Observing a performance cost when a putative task boundary is crossed may be too coarse a measure to adequately describe how a task is organized. So, what exactly is a task? How do researchers know when two responses belong to the same or different tasks, and how do we determine when an effect relates to a change of task instead of some other central operation, such as attentional shifts or rebinding? In this chapter, we will examine the construct of a task and whether it is useful for understanding voluntary behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The blocks were included to examine the separate question of whether the decreases in RT associated with reducing the number of stimulus and response alternatives depended on which stimuli were removed from the set. This question is not related to our focus, which whether conventional measures of task switching capture the structure of task as determined by the complete set of transitional RTs.

  2. 2.

    The actual parameters used were as follows: inertia, 0.1; repulsion strength, 20,000.0; attraction strength, 10.0; maximum displacement, 10.0; auto-stabilized function, true; autostab strength, 80.0; autostab sensibility, 0.2; and gravity, 30.0. Only the repulsion strength was changed from the default value.

  3. 3.

    The Gephi software does not make an identical graph each time it is run. That is, the positions vary from run to run; although with networks this is simple, they are generally similar. The graphs we have chosen are highly typical of those produced by the software. Moreover, our conclusions are based on the strengths of the connection between responses, depicted by the edge thickness. This is a property of the data and does not change across runs.

References

  • Adam, J. J., Hommel, B., & Umilta, C. (2003). Preparing for perception and action (I): The role of grouping in the response-cuing paradigm. Cognitive Psychology, 46, 302–358.

    Article  PubMed  Google Scholar 

  • Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance (Vol. attention and performance XV) (pp. 421–452). Harvard University Press.

    Google Scholar 

  • Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15, 610–615. https://doi.org/10.1111/j.0956-7976.2004.00728.x

    Article  PubMed  Google Scholar 

  • Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200. https://doi.org/10.1016/j.tics.2008.02.004

    Article  PubMed  Google Scholar 

  • Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical. Nature Reviews Neuroscience, 10, 659–669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22, 170–188. https://doi.org/10.1016/j.tics.2017.11.005

    Article  PubMed  Google Scholar 

  • Badre, D., Bhandari, A., Keglovits, H., & Kikumoto, A. (2021). The dimensionality of neural representations for control. Current Opinion in Behavioral Sciences, 38, 20–28.

    Article  PubMed  Google Scholar 

  • Barcelo, F., Escera, C., Corral, M. J., & Periánez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 1734–1748.

    Article  PubMed  Google Scholar 

  • Bartlett, F. C. (1932). Remembering: An experimental and social study. Cambridge University.

    Google Scholar 

  • Bezdek, M. A., Godwin, C. A., Smith, D. M., Hazeltine, E., & Schumacher, E. H. (2019). How conscious aspects of task representation affect dynamic behavior in complex situations. Psychology of Consciousness: Theory, Research, and Practice, 6, 225–241.

    Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    Article  PubMed  Google Scholar 

  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive Psychology, 13, 207–230.

    Article  Google Scholar 

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.

    Article  PubMed  Google Scholar 

  • Collins, A. G. E., & Frank, M. J. (2016). Motor demands constrain cognitive rule structures. PLoS Computational Biology, 12, e1004785. https://doi.org/10.1371/journal.pcbi.1004785

    Article  PubMed  PubMed Central  Google Scholar 

  • Cookson, S. L., Hazeltine, E., & Schumacher, E. H. (2016). Neural representations of stimulus-response associations during task preparation. Brain Research, 1648, 496–505.

    Article  PubMed  Google Scholar 

  • Cookson, S. L., Hazeltine, E., & Schumacher, E. H. (2020). Task structure boundaries affect response preparation. Psychological Research, 84, 1610–1621. https://doi.org/10.1007/s00426-019-01171-9

    Article  PubMed  Google Scholar 

  • Courtney, S. M., Roth, J. K., & Sala, J. B. (2007). A hierarchical biased competition model of domain-dependent working memory maitenance and executive control. In Working memory: Behavioural and neural correlates (pp. 369–383).

    Google Scholar 

  • Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognition control: Meta-analyses of switching and Stroop studies. Human Brain Mapping, 25, 22–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. https://doi.org/10.1016/j.tics.2008.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreisbach, G. (2012). Mechanisms of cognitive control: The functional role of task rules. Current Directions in Psychological Science, 21, 227–231.

    Article  Google Scholar 

  • Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80, 35–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dykstra, T., Smith, D. M., Schumacher, E. H., & Hazeltine, E. (in prep). Measuring task structure with transitional response times: Task representations are more than task sets.

    Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.

    Article  Google Scholar 

  • Fitts, P. M., & Deininger, R. L. (1954). S-R compatibility: Correspondence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48, 483–492.

    Article  PubMed  Google Scholar 

  • Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., & Philipp, A. (2020). Binding and retrieval in action control (BRAC). Trends in Cognitive Sciences, 375–387. https://doi.org/10.1016/j.tics.2020.02.004

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). Elsevier.

    Google Scholar 

  • Gopher, D., Armony, L., & Greenshpan, Y. (2000). Switching tasks and attention policies. Journal of Experimental Psychology: General, 129, 309–339.

    Google Scholar 

  • Gozli, D. (2019). Experimental psychology and human agency. Springer.

    Book  Google Scholar 

  • Grant, L. D., Cookson, S. L., & Weissman, D. H. (2020). Task sets serve as boundaries for the congruency sequence effect. Journal of Experimental Psychology: Human Perception and Performance, 46, 798–812.

    PubMed  Google Scholar 

  • Halvorson, K. M., & Hazeltine, E. (2015). Do small dual-task costs reflect ideomotor compatibility or the absence of crosstalk? Psychonomic Bulletin & Review, 22, 1403–1409. https://doi.org/10.3758/s13423-015-0813-8

    Article  Google Scholar 

  • Hayes, A., Davidson, M., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10, 178–198.

    Article  PubMed  Google Scholar 

  • Hazeltine, E. (2005). Response-response compatibility during bimanual movements: Evidence for the conceptual coding of action. Psychonomic Bulletin & Review, 12, 682–688.

    Article  Google Scholar 

  • Hazeltine, E., & Schumacher, E. H. (2016). In B. Ross (Ed.), Understanding central processes: The case against simple stimulus-response associations and for complex task representation (Vol. 64, pp. 195–245). Psychology of Learning and Motivation.

    Google Scholar 

  • Hazeltine, E., Akçay, Ç., & Mordkoff, J. T. (2011a). Keeping Simon simple: Examining the relationship between sequential modulations and feature repetitions with two stimuli, two locations, and two responses. Acta Psychologia, 136, 245–252.

    Article  Google Scholar 

  • Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011b). The boundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37, 1898–1914.

    PubMed  Google Scholar 

  • Hirsch, P., Schwarzkopp, T., Declerck, M., Reese, S., & Koch, I. (2016). Age-related differences in task switching and task preparation: Exploring the role of task-set competition. Acta Psychologia, 170, 66–71.

    Article  Google Scholar 

  • Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5, 183–216.

    Article  Google Scholar 

  • Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Science, 8, 494–500.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC). Behavioral and Brain Sciences, 24, 849–878.

    Article  PubMed  Google Scholar 

  • Hommel, B., Proctor, R. W., & Vu, K. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.

    Article  PubMed  Google Scholar 

  • Jersild, A. T. (1927). Mental set and shift. Archives of Psychology, 89.

    Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching-a review. Psychological Bulletin, 136(5), 849–874. https://doi.org/10.1037/a0019842

    Article  PubMed  Google Scholar 

  • Kikumoto, A., & Mayr, U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117, 10603–10608.

    Article  Google Scholar 

  • Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: A meta-analysis. Human Brain Mapping, 33, 130–142.

    Article  PubMed  Google Scholar 

  • Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking – An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583. https://doi.org/10.1037/bul0000144

    Article  PubMed  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235. https://doi.org/10.1016/j.tics.2007.04.005

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Lien, M.-C., Ruthruff, E., Remington, R. W., & Johnston, J. C. (2005). On the limits of advance preparation for a task-switch: Do people prepare all of the task some of the time or some of the task all the time. Journal of Experimental Psychology: Human Perception and Performance, 31, 299–315.

    PubMed  Google Scholar 

  • Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109, 376–400.

    Article  PubMed  Google Scholar 

  • Logan, G. D. (2004). Working memory, task switching, and executive control in the task span procedure. Journal of Experimental Psychology: General, 133, 218–236. https://doi.org/10.1037/0096-3445.133.2.218

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Schneider, D. W. (2006). Interpreting instructional cues in task switching procedures: The role of mediator retrieval. Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 347–363. https://doi.org/10.1037/0278-7393.32.3.347

    Article  PubMed  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    Article  PubMed  Google Scholar 

  • Mayr, U. (2002). Inhibition of action rules. Psychonomic Bulletin & Review, 9, 93–99.

    Article  Google Scholar 

  • Mayr, U., & Bryck, R. L. (2005). Sticky rules: Integration between abstract rules and specific actions. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 337–350.

    PubMed  Google Scholar 

  • Mayr, U., Diedrichsen, J., Ivry, R. B., & Keele, S. W. (2006). Dissociating task-set selection from task-set inhibition in the prefrontal cortex. Journal of Cognitive Neuroscience, 18, 14–21. https://doi.org/10.1162/089892906775250085

    Article  PubMed  Google Scholar 

  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253.

    Article  PubMed  Google Scholar 

  • Miller, J. (1985). A hand advantage in preparation of simple keypress responses: Reply to reeve and Proctor (1984). Journal of Experimental Psychology: Human Perception and Performance, 11, 221–233.

    Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Mittelstädt, V., Miller, J., & Kiesel, A. (2018). Trading off switch costs and stimulus availability benefits: An investigation of voluntary task-switching behavior in a predictable dynamic multitasking environment. Memory & Cognition, 46, 699–715.

    Article  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. https://doi.org/10.1016/S1364-6613(03)00028-7

    Article  PubMed  Google Scholar 

  • Monsell, S., & Driver, J. (2000). Banishing the control homunculus. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 3–32). MIT Press.

    Chapter  Google Scholar 

  • Murray, S., Krasich, K., Schooler, J. W., & Seli, P. (2020). What's in a task? Complications in the study of the task-unrelated-thought variety of mind wandering. Perspectives on Psychological Science, 15, 572–588. https://doi.org/10.1177/1745691619897966

    Article  PubMed  Google Scholar 

  • Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15.

    Article  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1–18). Plenum.

    Google Scholar 

  • Petrides, M. (2006). The rostro-caudal axis of cognitive control procesing within lateral frontal cortex. In From monkey brain to human brain: A Fyssen Foundation symposium (pp. 293–314).

    Google Scholar 

  • Poljac, E., Koch, I., & Bekkering, H. (2009). Dissociating restart cost and mixing cost in task switching. Psychological Research, 73, 407–416.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action (pp. 167–201). Springer-Verlag.

    Chapter  Google Scholar 

  • Qiao, L., Chen, A., & Egner, T. (2017). Dynamic trial-by-trial recoding of task-set representations in the frontoparietal cortex mediates behavioral flexibility. Journal of Neuroscience, 37, 11037–11050. https://doi.org/10.1523/JNEUROSCI.0935-17.2017

    Article  PubMed  Google Scholar 

  • Qiao, L., Xu, M., Zhang, L., Li, H., & Chen, A. (2020). Flexible adjustment of the effective connectivity between the fronto-parietal and visual regions supports cognitive flexibility. NeuroImage. https://doi.org/10.1016/j.neuroimage.2020.117158

  • Rescorla, R. A. (1988a). Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience, 11, 329–352.

    Article  PubMed  Google Scholar 

  • Rescorla, R. A. (1988b). Pavlovian conditioning: It's not what you think it is. American Psychologist, 43, 151–160.

    Article  PubMed  Google Scholar 

  • Rogers, R., & Monsell, S. (1995). The costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: Human Perception and Performance, 124, 207–231.

    Article  Google Scholar 

  • Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109, 444–474.

    Article  PubMed  Google Scholar 

  • Rosenbaum, D. A. (1983). The movement precuing technique: Assumptions, applications, and extensions. In R. A. Magill (Ed.), Memory and control of action (pp. 230–274). North-Holland Publishing Company.

    Google Scholar 

  • Ruthruff, E., Remington, R. W., & Johnston, J. C. (2001). Switching between simple cognitive tasks: The interaction of top-down and bottom-up factors. Journal of Experimental Psychology: Human Perception and Performance, 27, 1404–1419.

    PubMed  Google Scholar 

  • Sakai, K. (2008). Task set and prefrontal cortex. In Annual review of neuroscience (Vol. 31, pp. 219–245). Annual Reviews.

    Google Scholar 

  • Schmidt, J. R., De Houwer, J., & Rothermund, K. (2016). The parallel episodic processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs. Cognitive Psychology, 91, 82–108.

    Article  PubMed  Google Scholar 

  • Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25, 449–454. https://doi.org/10.1177/0963721416665085

    Article  Google Scholar 

  • Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual-task conditions. Journal of Experimental Psychology: General, 138, 270–290.

    Article  PubMed  Google Scholar 

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London B, 298, 199–209.

    Article  Google Scholar 

  • Simon, J. R. (1969). Reactions towards the source of stimulation. Journal of Experimental Psychology, 81, 174–176.

    Article  PubMed  Google Scholar 

  • Smith, D. M., Dykstra, T., Hazeltine, E., & Schumacher, E. H. (2020). Task representation affects the boundaries of behavioral slowing following and error. Attention Perception & Psychophysics, 82, 2315–2326. https://doi.org/10.3758/s13414-020-01985-5

    Article  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Takacs, A., Mückschel, M., Roessner, V., & Beste, C. (2020). Decoding stimulus-response representations and their stability using EEG-based multivariate pattern analysis. Cerebral Cortex Communications. https://doi.org/10.1093/texcom/tgaa016

  • Tolman, E. C. (1932). Purposive behavior in animals and men. Century.

    Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208. Retrieved from https://pdfs.semanticscholar.org/0874/a64d60a23a20303877e23caf8e1d4bb446a4.pdf

    Article  PubMed  Google Scholar 

  • Tuckey, M. R., & Brewer, N. (2003). The influence of schemas, stimulus ambiguity, and interview schedule on eyewitness memory over time. Journal of Experimental Psychology: Applied, 9, 101.

    PubMed  Google Scholar 

  • Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518–525. https://doi.org/10.1037/0033-295x.115.2.518

    Article  PubMed  Google Scholar 

  • Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J., & Wagner, A. D. (2014). Frontoparietal representations of task context support the flexible control of goal-directed cognition. Journal of Neuroscience, 34, 10743–10755.

    Article  PubMed  Google Scholar 

  • Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40, 2022–2037.

    PubMed  Google Scholar 

  • Wifall, T., Hazeltine, E., & Mordkoff, J. T. (2015). The roles of stimulus and response uncertainty in forced-choice performance: An amendment of hick/Hyman law. Psychological Research Psychologische Forschung. https://doi.org/10.1007/s00426-015-0675-8

  • Wisniewski, D., Reverberi, C., Tusche, A., & Haynes, J.-D. (2015). The neural representation of voluntary task-set selection in dynamic environments. Cerebral Cortex, 25, 4715–4726.

    Article  PubMed  Google Scholar 

  • Woolgar, A., Hampshire, A., Thompson, R., & Duncan, J. (2011). Adaptive coding of task-relevant information in human frontoparietal cortex. Journal of Neuroscience, 31, 14592–14599.

    Article  PubMed  Google Scholar 

  • Wylie, G., & Allport, A. (2000). Task switching and the measurement of "switch costs". Psychological Research, 63, 212–233.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot Hazeltine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazeltine, E., Dykstra, T., Schumacher, E. (2022). What Is a Task and How Do You Know If You Have One or More?. In: Gozli, D., Valsiner, J. (eds) Experimental Psychology. Theory and History in the Human and Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-17053-9_6

Download citation

Publish with us

Policies and ethics