Skip to main content

Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-task Learning on Imaging and Tabular Data

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13564))

Included in the following conference series:

Abstract

While the number of stroke patients is increasing worldwide and every fifth stroke survivor is developing long-term cognitive impairment, its prediction becomes more and more important. In this work, we address the challenge of predicting any long-term cognitive impairment after a stroke using deep learning. We explore multi-task learning that combines the cognitive classification with the segmentation of brain lesions such as infarct and white matter hyperintensities or the reconstruction of the brain. Our approach is further expanded to include clinical non-imaging data to the input imaging information. The multi-task model using an autoencoder for reconstruction achieved the highest performance in classifying post-stroke cognitive impairment when only imaging data is used. The performance can be further improved by incorporating clinical information using a previously proposed dynamic affine feature map transformation. We developed and tested our approach on an in-house acquired dataset of magnetic resonance images specifically used to visualize stroke damage right after stroke occurrence. The patients were followed-up after one year to assess their cognitive status. The multi-task model trained on infarct segmentation on diffusion tensor images and enriched with clinical non-imaging information achieved the best overall performance with a balanced accuracy score of 70.3% and an area-under-the-curve of 0.791.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betrouni, N., Yasmina, M., Bombois, S., Pétrault, M., Dondaine, T., Lachaud, C.: Texture features of magnetic resonance images: an early marker of post-stroke cognitive impairment. Transl. Stroke Res. 11(4), 643–652 (2020). https://doi.org/10.1007/s12975-019-00746-3

    Article  Google Scholar 

  2. Longstreth, W.T., Diehr, P.H., Yee, L.M., Newman, A.B., Beauchamp, N.J.: Brain imaging findings in elderly adults and years of life, healthy life, and able life over the ensuing 16 years: the Cardiovascular health study. J. Am. Geriatr. Soc. 62(10), 1838–1843 (2014)

    Article  Google Scholar 

  3. Zietemann, V., et al.: Early MoCA predicts long-term cognitive and functional outcome and mortality after stroke. Neurology 91(20), e1838–e1850 (2018)

    Article  Google Scholar 

  4. Georgakis, M.K., et al.: Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: a multicenter prospective cohort study. Alzheimer’s Dementia (2022)

    Google Scholar 

  5. Hénon, H., Pasquier, F., Leys, D.: Poststroke dementia. Cerebrovasc. Dis. 22(1), 61–70 (2006)

    Article  Google Scholar 

  6. Weaver, N.A., Kuijf, H.J., Aben, H.P., Abrigo, J., Bae, H.-J., Barbay, M., et al.: Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute Ischaemic stroke cohorts. Lancet Neurol. 20(6), 448–459 (2021)

    Article  Google Scholar 

  7. Zhang, Y., Yang, Q.: A survey on multi-task learning. arXiv preprint arXiv:1707.08114 (2017)

  8. Zimmer, V.A., et al.: Placenta segmentation in ultrasound imaging: addressing sources of uncertainty and limited field-of-view. arXiv preprint arXiv:2206.14746 (2022)

  9. Crawshaw, M.: Multi-task learning with deep neural networks: a survey. arXiv preprint arXiv:2009.09796 (2020)

  10. Zhou, Y., et al.: Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Med. Imag. Anal. 70, 101918 (2021)

    Google Scholar 

  11. Lopes, R., et al.: Prediction of long-term cognitive function after minor stroke using functional connectivity. Neurology 96(8), e1167–e1179 (2021)

    Article  Google Scholar 

  12. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.S.: Learn To Pay Attention. Proc, ICLR (2018)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv preprint arXiv:2003.05991 (2020)

  15. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3D image and tabular data via the dynamic affine feature map transform. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 688–698. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_66

    Chapter  Google Scholar 

  16. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Meth. Programs Biomed. 208, 106236 (2021)

    Google Scholar 

  17. Ledig, C., et al.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015)

    Article  Google Scholar 

  18. Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., Peters, T.M.: 3D statistical neuroanatomical models from 305 MRI volumes. In: Proceeding IEEE- Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1827 (1993)

    Google Scholar 

  19. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Binzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binzer, M., Hammernik, K., Rueckert, D., Zimmer, V.A. (2022). Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-task Learning on Imaging and Tabular Data. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C. (eds) Predictive Intelligence in Medicine. PRIME 2022. Lecture Notes in Computer Science, vol 13564. Springer, Cham. https://doi.org/10.1007/978-3-031-16919-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16919-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16918-2

  • Online ISBN: 978-3-031-16919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics