Skip to main content

Facing Annotation Redundancy: OCT Layer Segmentation with only 10 Annotated Pixels per Layer

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13543))

Included in the following conference series:

Abstract

The retinal layer segmentation from OCT images is a fundamental and important task in the diagnosis and monitoring of eye-related diseases. The quest for improved accuracy is driving the use of increasingly large dataset with fully pixel-level layer annotations. But the manual annotation process is expensive and tedious, further, the annotators also need sufficient medical knowledge which brings a great burden on the doctors. We observe that there exist a large number of repetitive texture patterns in the flatten OCT images. More surprisingly, by significantly reducing the annotation from 100% to 10%, even to 1%, the performance of a segmentation model only drops a little, i.e., error from \(2.53\, \upmu \text {m}\) to \(2.76\,\upmu \text {m}\), and to \(3.27\,\upmu \text {m}\) on a validation set, respectively. Such observation motivates us to deeply investigate the redundancies of the annotation in the feature space which would definitely facilitate the annotation for medical images. To greatly reduce the expensive annotation costs, we propose a new annotation-efficient learning paradigm by annotating a fixed and limited number of pixels for each layer in each image. Considering the redundancies in the repetitive patterns in each layer of OCT images, we employ a VQ memory bank to store the extracted features on the whole datasets to augment the visual representation. The experimental results on two public datasets validate the effectiveness of our model. With only 10 annotated pixels for each layer in an image, our performance is very close to the previous methods trained with the whole fully annotated dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ‘1% + VQ’ is our proposed model and more details would be described in Sect. 3.

References

  1. Antony, B.J., et al.: A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes. Biomed. Opt. Express 4(12), 2712–2728 (2013)

    Google Scholar 

  2. Bavinger, J.C., et al.: The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry. Invest. Ophthalmol. Vis. Sci. 57(1), 208–217 (2016)

    Article  Google Scholar 

  3. Carass, A., Lang, A., Hauser, M., Calabresi, P.A., Ying, H.S., Prince, J.L.: Multiple-object geometric deformable model for segmentation of macular OCT. Biomed. Opt. Express 5(4), 1062–1074 (2014)

    Article  Google Scholar 

  4. Fang, K., Li, W.-J.: DMNet: difference minimization network for semi-supervised segmentation in medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 532–541. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_52

    Chapter  Google Scholar 

  5. Farsiu, S., et al.: Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology 121(1), 162–172 (2014)

    Google Scholar 

  6. Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  7. He, Y., et al.: Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks. arXiv preprint arXiv:1803.05120 (2018)

  8. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  9. He, Y., Carass, A., Solomon, S.D., Saidha, S., Calabresi, P.A., Prince, J.L.: Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls. Data Brief 22, 601–604 (2019)

    Article  Google Scholar 

  10. He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Self domain adapted network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 437–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_43

    Chapter  Google Scholar 

  11. Kansal, V., Armstrong, J.J., Pintwala, R., Hutnik, C.: Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS ONE 13(1), e0190621 (2018)

    Google Scholar 

  12. Keane, P.A., et al.: Evaluation of optical coherence tomography retinal thickness parameters for use in clinical trials for neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 50(7), 3378–3385 (2009)

    Google Scholar 

  13. Khan, S., Shahin, A.H., Villafruela, J., Shen, J., Shao, L.: Extreme points derived confidence map as a cue for class-agnostic interactive segmentation using deep neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 66–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_8

  14. Lang, A., et al.: Retinal layer segmentation of macular oct images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)

    Google Scholar 

  15. Li, D., Dharmawan, D.A., Ng, B.P., Rahardja, S.: Residual U-Net for retinal vessel segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1425–1429. IEEE (2019)

    Google Scholar 

  16. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

  17. Liu, H., et al.: Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retina OCT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 108–118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_11

  18. Novosel, J., Vermeer, K.A., De Jong, J.H., Wang, Z., Van Vliet, L.J.: Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas. IEEE Trans. Med. Imaging 36(6), 1276–1286 (2017)

    Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  20. Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Google Scholar 

  21. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  22. Wang, G., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: Uncertainty-guided efficient interactive refinement of fetal brain segmentation from stacks of MRI slices. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 279–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_28

  23. Wang, Y., et al.: Double-uncertainty weighted method for semi-supervised learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_53

  24. Xie, H., et al.: Globally optimal segmentation of mutually interacting surfaces using deep learning. arXiv preprint arXiv:2007.01259 (2020)

  25. Xu, Y., et al.: Partially-supervised learning for vessel segmentation in ocular images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 271–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_26

  26. Xu, Y., et al.: Crowd counting with partial annotations in an image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15570–15579 (2021)

    Google Scholar 

  27. Yazdanpanah, A., Hamarneh, G., Smith, B., Sarunic, M.: Intra-retinal layer segmentation in optical coherence tomography using an active contour approach. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 649–656. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_79

  28. Zhou, Y., Chen, H., Lin, H., Heng, P.-A.: Deep semi-supervised knowledge distillation for overlapping cervical cell instance segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 521–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_51

Download references

Acknowledge

This research was supported by A*STAR AI3 HTPO Seed Fund (Grant No. C211118014) and the Agency for Science, Technology and Research (A*STAR) AME Programmatic Funds (Grant Number: A20H4b0141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Xu, X., Fu, H., Wang, M., Goh, R.S.M., Liu, Y. (2022). Facing Annotation Redundancy: OCT Layer Segmentation with only 10 Annotated Pixels per Layer. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics