Skip to main content

Multi-circle Detection Using Multimodal Optimization

  • Chapter
  • First Online:
Engineering Applications of Modern Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1069))

Abstract

Object and shape detection in digital image were one of the hot topic over the last two decades. Especially automatic multi circle detection has received more attention over last years. Hough transform (HT) is a well-known and most popular method for lines and circles detection. However, HT has huge computational complexity expense. This paper proposed a new successful heuristic method to reduce computation time and improve the speed of HT for circle detection. In this proposed method the edges information of the image is obtained by means of Robert edge detection. Then, multimodal particle swarm optimization (PSO) and local search is employed to locate all exciting circle in the image. The experiments on benchmark images show that our scheme can perform multi circle detection successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Circle detection using electro-magnetism optimization. Inf. Sci. 182, 40–55 (2012)

    Article  MathSciNet  Google Scholar 

  2. Yuen, H., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vis. Comput. 8, 71–77 (1990)

    Article  Google Scholar 

  3. Shapiro, L., Stockman, G.: Computer vision. In: Chapter-5, Filtering and Enhancing Images. Prentice-Hall, Inc., New Jersey (2001)

    Google Scholar 

  4. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)

    Article  MATH  Google Scholar 

  5. Cheng, H.-D., Guo, Y., Zhang, Y.: A novel Hough transform based on eliminating particle swarm optimization and its applications. Pattern Recogn. 42, 1959–1969 (2009)

    Article  MATH  Google Scholar 

  6. Rahkar-Farshi, T., Kesemen, O., Behjat-Jamal, S.: Multi hyperbole detection on images using modified artificial bee colony (ABC) for multimodal function optimization. In: Proceedings of 2014 22nd Signal Processing and Communications Applications Conference (SIU), 23–25 Apr 2014, pp. 894–898 (2014)

    Google Scholar 

  7. Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recogn. Lett. 27, 652–657 (2006)

    Article  Google Scholar 

  8. Zhang, S., Zhou, X., Wang, Y., Gao, J., Wang, H.: Circle detection based on artificial bee colony algorithm. Sci. Bull. Natl. Min. Univ. (2016)

    Google Scholar 

  9. Rahkar Farshi, T.: Battle royale optimization algorithm. Neural Comput. Appl. 33, 1139–1157 (2021)

    Article  Google Scholar 

  10. Orujpour, M., Feizi-Derakhshi, M.-R., Rahkar-Farshi, T.: Multi-modal forest optimization algorithm. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04113-z

    Article  Google Scholar 

  11. Farshi, T.R., Drake, J.H., Özcan, E.: A multimodal particle swarm optimization-based approach for image segmentation. Expert Syst. Appl. 149, 113233 (2020). https://doi.org/10.1016/j.eswa.2020.113233

    Article  Google Scholar 

  12. Rahkar Farshi, T., Orujpour, M.: A multi-modal bacterial foraging optimization algorithm. J. Ambient Intell. Humaniz. Comput. 12, 10035–10049 (2021)

    Article  Google Scholar 

  13. Farshi, T.R.: A memetic animal migration optimizer for multimodal optimization. Evol. Syst. 13, 133–144 (2022)

    Article  Google Scholar 

  14. Grüninger, T., Wallace, D.: Multimodal optimization using genetic algorithms. Master’s thesis, Stuttgart University (1996)

    Google Scholar 

  15. Ursem, R.K.: Multinational GAs: multimodal optimization techniques in dynamic environments. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 19–26

    Google Scholar 

  16. Wei, L., Zhao, M.: A niche hybrid genetic algorithm for global optimization of continuous multimodal functions. Appl. Math. Comput. 160, 649–661 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Dilettoso, E., Salerno, N.: A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic devices. IEEE Trans. Magn. 42, 1203–1206 (2006)

    Article  Google Scholar 

  18. Li, X.: A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 78–85

    Google Scholar 

  19. Barrera, J., Coello, C.A.C.: A particle swarm optimization method for multimodal optimization based on electrostatic interaction. In: Proceedings of Mexican International Conference on Artificial Intelligence, pp. 622–632

    Google Scholar 

  20. Qu, B.-Y., Suganthan, P.N., Das, S.: A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17, 387–402 (2013)

    Article  Google Scholar 

  21. Rahkar-Farshi, T., Behjat-Jamal, S., Feizi-Derakhshi, M.-R.: An improved multimodal PSO method based on electrostatic interaction using n-nearest-neighbor local search (2014). arXiv preprint arXiv:1410.2056

  22. Cuevas, E., Sención-Echauri, F., Zaldivar, D., Pérez-Cisneros, M.: Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput. 16, 281–296 (2012)

    Article  Google Scholar 

  23. Qu, B.-Y., Liang, J.J., Suganthan, P.N.: Niching particle swarm optimization with local search for multi-modal optimization. Inf. Sci. 197, 131–143 (2012)

    Article  Google Scholar 

  24. Hu, X., Eberhart, R.C., Shi, Y.: Particle swarm with extended memory for multiobjective optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS’03, pp. 193–197 (2003)

    Google Scholar 

  25. Zhang, J., Zhang, J.-R., Li, K.: A sequential niching technique for particle swarm optimization. In: Proceedings of International Conference on Intelligent Computing, pp. 390–399

    Google Scholar 

  26. Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 105–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AC drafted the manuscript, proofread the manuscript and approved the final manuscript. SM drafted the manuscript. TA provided core concepts, drafted the manuscript, carried out implementations and simulations for this manuscript.

Corresponding author

Correspondence to Aydin Cetin .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cetin, A., Rezai, S., Akan, T. (2023). Multi-circle Detection Using Multimodal Optimization. In: Akan, T., Anter, A.M., Etaner-Uyar, A.Ş., Oliva, D. (eds) Engineering Applications of Modern Metaheuristics. Studies in Computational Intelligence, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-031-16832-1_11

Download citation

Publish with us

Policies and ethics