Skip to main content

Almost Certain Termination forĀ \(\mathcal {ALC}\) Weakening

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Abstract

Concept refinement operators have been introduced to describe and compute generalisations and specialisations of concepts, with, amongst others, applications in concept learning and ontology repair through axiom weakening. We here provide a probabilistic proof of almost-certain termination for iterated refinements, thus for an axiom weakening procedure for the fine-grained repair of \(\mathcal {ALC}\) ontologies. We determine the computational complexity of refinement membership, and discuss performance aspects of a prototypical implementation, verifying that almost-certain termination means actual termination in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One way to verify this is to observe that the series \(\sum _{i=0}^\infty (\log (i + \ell -\epsilon ) - \log (i + \ell ))\) diverges to minus infinity. This in turn may be verified by noting that \(\sum _{i=0}^\infty (\log (i + \ell -\epsilon ) - \log (i + \ell )) \le \sum _{i=0}^\infty (\log (i + \lceil \ell \rceil -\epsilon ) - \log (i + \lceil \ell \rceil )) = \sum _{i=\lceil \ell \rceil }^\infty (\log (i -\epsilon ) - \log (i))\), because \(\log (i + \ell - \epsilon ) - \log (i + \ell ) \le \log (i+\lceil \ell \rceil - \epsilon ) - \log (i + \lceil \ell \rceil )\), and then showing that \(-\sum _{i=\lceil \ell \rceil }^\infty (\log (i -\epsilon ) - \log (i)) = \sum _{i=\lceil \ell \rceil }^\infty \log (i) - \log (i-\epsilon )\) diverges to plus infinity by means of the integral method: the terms of the series are all positive, and \(\int _{\lceil \ell \rceil }^U \log (x) - \log (x-\epsilon ) dx\) goes to infinity when U goes to infinity. Since the integral diverges, so does the series, which gives us our conclusion.

  2. 2.

    For example, suppose that the algorithm terminates in exactly n steps with probability \(6/\pi ^2 \cdot n^{-2}\). Using the fact that \(\sum _{n=1}^\infty n^{-2} = \pi ^2/6\), we have at once that the algorithm terminates in finite time with probability 1. However, the expectation of its runtime would be \(6/\pi ^2 \sum _{n=1}^\infty n^{-1}\), which diverges to infinity.

  3. 3.

    The implementation is available at https://bitbucket.org/troquard/ontologyutils.

  4. 4.

    http://geneontology.org/docs/download-ontology/.

  5. 5.

    These ontologies can be found in the directory ontologyutils/src/master/resources/Random/ of the implementation.

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATHĀ  Google ScholarĀ 

  2. Baader, F., Kriegel, F., Nuradiansyah, A., PeƱaloza, R.: Making repairs in description logics more gentle. In: Proceedings of KR 2018, pp. 319ā€“328 (2018)

    Google ScholarĀ 

  3. Baader, F., KĆ¼sters, R.: Nonstandard inferences in description logics: the story so far. In: Gabbay, D.M., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I: Logics for the XXIst Century, pp. 1ā€“75. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-31072-X_1

    ChapterĀ  MATHĀ  Google ScholarĀ 

  4. Baader, F., PeƱaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52ā€“67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74565-5_7

  5. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40ā€“59. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44960-4_3

  6. Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., PeƱaloza, R., Plaza, E.: Upward refinement operators for conceptual blending in the description logic \(\cal{EL} ^{++}\). Ann. Math. Artif. Intell. 82(1ā€“3), 69ā€“99 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  7. Confalonieri, R., Galliani, P., Kutz, O., Porello, D., Righetti, G., Troquard, N.: Towards even more irresistible axiom weakening. In: Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop on Description Logics (DL 2020) co-located with the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020), Online Event, Rhodes, Greece, 12ā€“14 September 2020. CEUR Workshop Proceedings, vol. 2663. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2663/paper-8.pdf

  8. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent OWL 2 DL terminologies. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 919ā€“928 (2014)

    Google ScholarĀ 

  9. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170ā€“184. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_15

  10. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in OWL ontologies. Web Semant.: Sci. Serv. Agents World Wide Web 3(4), 268ā€“293 (2005)

    ArticleĀ  Google ScholarĀ 

  11. van der Laag, P.R., Nienhuys-Cheng, S.H.: Completeness and properness of refinement operators in inductive logic programming. J. Logic Program. 34(3), 201ā€“225 (1998)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  12. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161ā€“174. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_18

    ChapterĀ  Google ScholarĀ 

  13. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\cal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147ā€“160. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_17

    ChapterĀ  MATHĀ  Google ScholarĀ 

  14. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1ā€“2), 203ā€“250 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103ā€“117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_9

    ChapterĀ  Google ScholarĀ 

  16. Musen, M.A.: The ProtĆ©gĆ© project: a look back and a look forward. AI Matters 1(4), 4ā€“12 (2015)

    ArticleĀ  Google ScholarĀ 

  17. Porello, D., Troquard, N., PeƱaloza, R., Confalonieri, R., Galliani, P., Kutz, O.: Two approaches to ontology aggregation based on axiom weakening. In: Lang, J. (ed.) Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13ā€“19 July 2018, pp. 1942ā€“1948 (2018)

    Google ScholarĀ 

  18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of IJCAI 2003, pp. 355ā€“362. Morgan Kaufmann (2003)

    Google ScholarĀ 

  19. Troquard, N., Confalonieri, R., Galliani, P., PeƱaloza, R., Porello, D., Kutz, O.: Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI 2018), pp. 1981ā€“1988. AAAI Press (2018)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Confalonieri, R., Galliani, P., Kutz, O., Porello, D., Righetti, G., Troquard, N. (2022). Almost Certain Termination forĀ \(\mathcal {ALC}\) Weakening. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics