Skip to main content

Rethinking Surgical Instrument Segmentation: A Background Image Can Be All You Need

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

Data diversity and volume are crucial to the success of training deep learning models, while in the medical imaging field, the difficulty and cost of data collection and annotation are especially huge. Specifically in robotic surgery, data scarcity and imbalance have heavily affected the model accuracy and limited the design and deployment of deep learning-based surgical applications such as surgical instrument segmentation. Considering this, we rethink the surgical instrument segmentation task and propose a one-to-many data generation solution that gets rid of the complicated and expensive process of data collection and annotation from robotic surgery. In our method, we only utilize a single surgical background tissue image and a few open-source instrument images as the seed images and apply multiple augmentations and blending techniques to synthesize amounts of image variations. In addition, we also introduce the chained augmentation mixing during training to further enhance the data diversities. The proposed approach is evaluated on the real datasets of the EndoVis-2018 and EndoVis-2017 surgical scene segmentation. Our empirical analysis suggests that without the high cost of data collection and annotation, we can achieve decent surgical instrument segmentation performance. Moreover, we also observe that our method can deal with novel instrument prediction in the deployment domain. We hope our inspiring results will encourage researchers to emphasize data-centric methods to overcome demanding deep learning limitations besides data shortage, such as class imbalance, domain adaptation, and incremental learning. Our code is available at https://github.com/lofrienger/Single_SurgicalScene_For_Segmentation.

A. Wang and M. Islam—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://endovissub2018-roboticscenesegmentation.grand-challenge.org/.

  2. 2.

    https://github.com/aleju/imgaug.

  3. 3.

    https://github.com/ternaus/robot-surgery-segmentation.

  4. 4.

    https://github.com/google-research/augmix.

References

  1. Allan, M., et al.: 2018 robotic scene segmentation challenge (2020)

    Google Scholar 

  2. Allan, M., et al: 2017 robotic instrument segmentation challenge (2019)

    Google Scholar 

  3. Cao, B., Zhang, H., Wang, N., Gao, X., Shen, D.: Auto-gan: self-supervised collaborative learning for medical image synthesis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10486–10493 (2020)

    Google Scholar 

  4. Colleoni, E., Edwards, P., Stoyanov, D.: Synthetic and real inputs for tool segmentation in robotic surgery. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 700–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_67

    Chapter  Google Scholar 

  5. Dobbs, R.W., Halgrimson, W.R., Talamini, S., Vigneswaran, H.T., Wilson, J.O., Crivellaro, S.: Single-port robotic surgery: the next generation of minimally invasive urology. World J. Urol. 38(4), 897–905 (2020)

    Article  Google Scholar 

  6. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  7. Eilertsen, G., Tsirikoglou, A., Lundström, C., Unger, J.: Ensembles of gans for synthetic training data generation (2021)

    Google Scholar 

  8. Garcia-Peraza-Herrera, L.C., Fidon, L., D’Ettorre, C., Stoyanov, D., Vercauteren, T., Ourselin, S.: Image compositing for segmentation of surgical tools without manual annotations. IEEE Trans. Med. Imaging 40(5), 1450–1460 (2021)

    Article  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  10. Hamghalam, M., Lei, B., Wang, T.: High tissue contrast MRI synthesis using multi-stage attention-gan for segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4067–4074 (2020)

    Google Scholar 

  11. Han, C., et al.: Synthesizing diverse lung nodules wherever massively: 3d multi-conditional gan-based CT image augmentation for object detection. In: 2019 International Conference on 3D Vision (3DV), pp. 729–737. IEEE (2019)

    Google Scholar 

  12. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: a simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781 (2019)

  13. Jung, A.B., et al.: imgaug. https://github.com/aleju/imgaug. Accessed 01 Feb 2020 (2020)

  14. Kishore, A., Choe, T.E., Kwon, J., Park, M., Hao, P., Mittel, A.: Synthetic data generation using imitation training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3078–3086 (2021)

    Google Scholar 

  15. Madan, S., et al.: When and how do cnns generalize to out-of-distribution category-viewpoint combinations? arXiv preprint arXiv:2007.08032 (2020)

  16. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  19. Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 969–977 (2018)

    Google Scholar 

  20. Xu, M., Islam, M., Lim, C.M., Ren, H.: Class-incremental domain adaptation with smoothing and calibration for surgical report generation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 269–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_26

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shun Hing Institute of Advanced Engineering (SHIAE project BME-p1-21) at the Chinese University of Hong Kong (CUHK), Hong Kong Research Grants Council (RGC) Collaborative Research Fund (CRF C4026-21GF and CRF C4063-18G), (GRS)#3110167 and Shenzhen-Hong Kong-Macau Technology Research Programme (Type C 202108233000303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A., Islam, M., Xu, M., Ren, H. (2022). Rethinking Surgical Instrument Segmentation: A Background Image Can Be All You Need. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics