Skip to main content

TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation with Transformers

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Combining information from multi-view images is crucial to improve the performance and robustness of automated methods for disease diagnosis. However, due to the non-alignment characteristics of multi-view images, building correlation and data fusion across views largely remain an open problem. In this study, we present TransFusion, a Transformer-based architecture to merge divergent multi-view imaging information using convolutional layers and powerful attention mechanisms. In particular, the Divergent Fusion Attention (DiFA) module is proposed for rich cross-view context modeling and semantic dependency mining, addressing the critical issue of capturing long-range correlations between unaligned data from different image views. We further propose the Multi-Scale Attention (MSA) to collect global correspondence of multi-scale feature representations. We evaluate TransFusion on the Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI (M &Ms-2) challenge cohort. TransFusion demonstrates leading performance against the state-of-the-art methods and opens up new perspectives for multi-view imaging integration towards robust medical image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bernard, O., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m &ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  4. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  5. Chang, Q., Yan, Z., Lou, Y., Axel, L., Metaxas, D.N.: Soft-label guided semi-supervised learning for bi-ventricle segmentation in cardiac cine mri. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1752–1755. IEEE (2020)

    Google Scholar 

  6. Chang, Q., et al.: Deeprecon: Joint 2d cardiac segmentation and 3d volume reconstruction via a structure-specific generative method. arXiv preprint arXiv:2206.07163 (2022)

  7. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Gao, Y., Zhou, M., Liu, D., Metaxas, D.: A multi-scale transformer for medical image segmentation: Architectures, model efficiency, and benchmarks. arXiv preprint arXiv:2203.00131 (2022)

  10. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  11. Ge, C., Liu, D., Liu, J., Liu, B., Xin, Y.: Automated recognition of arrhythmia using deep neural networks for 12-lead electrocardiograms with fractional time-frequency domain extension. J. Med. Imaging Health Inf. 10(11), 2764–2767 (2020)

    Article  Google Scholar 

  12. Hatamizadeh, A., et al.: Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  13. He, X., Tan, C., Qiao, Y., Tan, V., Metaxas, D., Li, K.: Effective 3d humerus and scapula extraction using low-contrast and high-shape-variability mr data. In: Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10953, p. 109530O. International Society for Optics and Photonics (2019)

    Google Scholar 

  14. Hu, J.B., Guan, A., Zhangli, Q., Sayadi, L.R., Hamdan, U.S., Vyas, R.M.: Harnessing machine-learning to personalize cleft lip markings. Plastic Reconstr. Surg. Glob. Open 8(9S), 150–151 (2020)

    Article  Google Scholar 

  15. Hu, Z., Metaxas, D., Axel, L.: In vivo strain and stress estimation of the heart left and right ventricles from mri images. Med. Image Anal. 7(4), 435–444 (2003)

    Article  Google Scholar 

  16. Ji, Y., Zhang, R., Wang, H., Li, Z., Wu, L., Zhang, S., Luo, P.: Multi-compound transformer for accurate biomedical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 326–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_31

    Chapter  Google Scholar 

  17. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. arXiv preprint arXiv:1702.00887 (2017)

  18. Li, L., Ding, W., Huang, L., Zhuang, X.: Right ventricular segmentation from short-and long-axis mris via information transition. arXiv preprint arXiv:2109.02171 (2021)

  19. Liu, D., Ge, C., Xin, Y., Li, Q., Tao, R.: Dispersion correction for optical coherence tomography by the stepped detection algorithm in the fractional fourier domain. Opt. Express 28(5), 5919–5935 (2020)

    Article  Google Scholar 

  20. Liu, D., Liu, J., Liu, Y., Tao, R., Prince, J.L., Carass, A.: Label super resolution for 3d magnetic resonance images using deformable u-net. In: Medical Imaging 2021: Image Processing, vol. 11596, p. 1159628. International Society for Optics and Photonics (2021)

    Google Scholar 

  21. Liu, D., Xin, Y., Li, Q., Tao, R.: Dispersion correction for optical coherence tomography by parameter estimation in fractional fourier domain. In: 2019 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 674–678. IEEE (2019)

    Google Scholar 

  22. Liu, D., Yan, Z., Chang, Q., Axel, L., Metaxas, D.N.: Refined deep layer aggregation for multi-disease, multi-view & multi-center cardiac mr segmentation. In: STACOM 2021. LNCS, vol. 13131, pp. 315–322. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_34

    Chapter  Google Scholar 

  23. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac mr images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  24. Remedios, S.W., Han, S., Dewey, B.E., Pham, D.L., Prince, J.L., Carass, A.: Joint image and label self-super-resolution. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2021. LNCS, vol. 12965, pp. 14–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87592-3_2

    Chapter  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Tian, Y., Peng, X., Zhao, L., Zhang, S., Metaxas, D.N.: Cr-gan: learning complete representations for multi-view generation. arXiv preprint arXiv:1806.11191 (2018)

  27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  28. Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: \(\omega \)-net (omega-net): fully automatic, multi-view cardiac mr detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018)

    Article  Google Scholar 

  29. Wang, S., et al.: A multi-view deep convolutional neural networks for lung nodule segmentation. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1752–1755. IEEE (2017)

    Google Scholar 

  30. Xia, Y., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2020)

    Google Scholar 

  31. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  32. Zhangli, Q., et al.: Region proposal rectification towards robust instance segmentation of biological images. arXiv preprint arXiv:2203.02846 (2022)

  33. Zhao, C., et al.: Applications of a deep learning method for anti-aliasing and super-resolution in mri. Magn. Reson. Imaging 64, 132–141 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Metaxas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D. et al. (2022). TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation with Transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics