Skip to main content

Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Coronary artery segmentation is a critical yet challenging step in coronary artery stenosis diagnosis. Most existing studies ignore important contextual anatomical information and vascular topologies, leading to limited performance. To this end, this paper proposes a progressive deep-learning based framework for accurate coronary artery segmentation by leveraging contextual anatomical information and vascular topologies. The proposed framework consists of a spatial anatomical dependency (SAD) module and a hierarchical topology learning (HTL) module. Specifically, the SAD module coarsely segments heart chambers and coronary artery for region proposals, and captures spatial relationship between coronary artery and heart chambers. Then, the HTL module adopts a multi-task learning mechanism to improve the coarse coronary artery segmentation by simultaneously predicting the hierarchical vascular topologies i.e., key points, centerlines, and neighboring cube-connectivity. Extensive evaluations, ablation studies, and comparisons with existing methods show that our method achieves state-of-the-art segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, D., et al.: Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management. Nat. Rev. Cardiol. 18(1), 37–57 (2021)

    Article  Google Scholar 

  2. Collet, C., et al.: Left main coronary artery disease: pathophysiology, diagnosis, and treatment. Nat. Rev. Cardiol. 15(6), 321–331 (2018)

    Article  Google Scholar 

  3. Hao, D., et al.: Sequential vessel segmentation via deep channel attention network. Neural Netw. 128, 172–187 (2020)

    Article  Google Scholar 

  4. Huang, K., et al.: Coronary wall segmentation in CCTA scans via a hybrid net with contours regularization. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1743–1747. IEEE (2020)

    Google Scholar 

  5. Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y., Xing, E.P.: ConnNet: a long-range relation-aware pixel-connectivity network for salient segmentation. IEEE Trans. Image Process. 28(5), 2518–2529 (2018)

    Article  MathSciNet  Google Scholar 

  6. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., Sermesant, M., Zhao, J., Li, S., McLeod, K., Young, A., Rhode, K., Mansi, T. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  7. Marano, R., et al.: CCTA in the diagnosis of coronary artery disease. Radiol. Med. (Torino) 125(11), 1102–1113 (2020). https://doi.org/10.1007/s11547-020-01283-y

    Article  Google Scholar 

  8. Mou, L., Zhao, Y., Fu, H., Liu, Y., Cheng, J., Zheng, Y., Su, P., Yang, J., Chen, L., Frangi, A.F., et al.: \(\rm CS^{2}\)-Net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  9. Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2018)

    Article  Google Scholar 

  10. Qi, Y., et al.: Examinee-Examiner Network: weakly supervised accurate coronary lumen segmentation using centerline constraint. IEEE Trans. Image Process. 30, 9429–9441 (2021)

    Article  Google Scholar 

  11. Qin, Y., et al.: AirwayNet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 212–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_24

    Chapter  Google Scholar 

  12. Serruys, P.W., et al.: Coronary computed tomographic angiography for complete assessment of coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78(7), 713–736 (2021)

    Article  Google Scholar 

  13. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  14. Virani, S.S., Alonso, A., Aparicio, H.J., et al.: Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143(8), e254–e743 (2021)

    Google Scholar 

  15. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

  16. Zhang, J., et al.: Weakly supervised vessel segmentation in X-ray angiograms by self-paced learning from noisy labels with suggestive annotation. Neurocomputing 417, 114–127 (2020)

    Article  Google Scholar 

  17. Zhang, X., Cui, Z., Feng, J., Song, Y., Wu, D., Shen, D.: CorLab-Net: anatomical dependency-aware point-cloud learning for automatic labeling of coronary arteries. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 576–585. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_59

    Chapter  Google Scholar 

  18. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  19. Zhu, X., Cheng, Z., Wang, S., Chen, X., Lu, G.: Coronary angiography image segmentation based on PSPNet. Comput. Methods Programs Biomed. 200, 105897 (2021)

    Article  Google Scholar 

  20. Zreik, M., et al.: Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans. Med. Imaging 39(5), 1545–1557 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Natural Science Foundation of China (grant number 62131015, 62073260), and Science and Technology Commission of Shanghai Municipality (STCSM) (grant number 21010502600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Feng or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2022). Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics