Skip to main content

An Adaptive Network with Extragradient for Diffusion MRI-Based Microstructure Estimation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Diffusion MRI (dMRI) is a powerful tool for probing tissue microstructural properties. However, advanced dMRI models are commonly nonlinear and complex, which requires densely sampled q-space and is prone to estimation errors. This problem can be resolved using deep learning techniques, especially optimization-based networks. In previous optimization-based methods, the number of iterative blocks was selected empirically. Furthermore, previous network structures were based on the iterative shrinkage-thresholding algorithm (ISTA), which could result in instability during sparse reconstruction. In this work, we proposed an adaptive network with extragradient for diffusion MRI-based microstructure estimation (AEME) by introducing an additional projection of the extragradient, such that the convergence of the network can be guaranteed. Meanwhile, with the adaptive iterative selection module, the sparse representation process can be modeled flexibly according to specific dMRI models. The network was evaluated on the neurite orientation dispersion and density imaging (NODDI) model on a public 3T and a private 7T dataset. AEME showed superior improved accuracy and generalizability compared to other state-of-the-art microstructural estimation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. Offi. J. Int. Soc. Magn. Reson. Med. 59(6), 1347–1354 (2008)

    Article  Google Scholar 

  2. Behrens, T.E., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 50(5), 1077–1088 (2003)

    Article  Google Scholar 

  3. Chen, G., et al.: Estimating tissue microstructure with undersampled diffusion data via graph convolutional neural networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 280–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_28

    Chapter  Google Scholar 

  4. Daducci, A., Canales-Rodríguez, E.J., Zhang, H., Dyrby, T.B., Alexander, D.C., Thiran, J.P.: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. Neuroimage 105, 32–44 (2015)

    Article  Google Scholar 

  5. Federau, C., O’Brien, K., Meuli, R., Hagmann, P., Maeder, P.: Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. J. Magn. Reson. Imaging 39(3), 624–632 (2014)

    Article  Google Scholar 

  6. Gibbons, E.K., et al.: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning. Magn. Reson. Med. 81(4), 2399–2411 (2019)

    Article  Google Scholar 

  7. Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  8. Holland, D., Kuperman, J.M., Dale, A.M.: Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage 50(1), 175–183 (2010)

    Article  Google Scholar 

  9. Kong, L., Sun, W., Shang, F., Liu, Y., Liu, H.: Learned interpretable residual extragradient ISTA for sparse coding. arXiv preprint arXiv:2106.11970 (2021)

  10. Mori, S., Zhang, J.: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5), 527–539 (2006)

    Article  Google Scholar 

  11. Neil, J.J., Bretthorst, G.L.: On the use of Bayesian probability theory for analysis of exponential decay date: an example taken from intravoxel incoherent motion experiments. Magn. Reson. Med. 29(5), 642–647 (1993)

    Article  Google Scholar 

  12. Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 32(4), e3998 (2019)

    Article  Google Scholar 

  13. Palombo, M., et al.: Sandi: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835 (2020)

    Article  Google Scholar 

  14. Schwab, E., Vidal, R., Charon, N.: Spatial-angular sparse coding for HARDI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 475–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_55

    Chapter  Google Scholar 

  15. Sedlar, S., Alimi, A., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: A spherical convolutional neural network for white matter structure imaging via dMRI. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 529–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_50

    Chapter  Google Scholar 

  16. Van Essen, D.C., et al.: The Wu-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  17. Ye, C.: Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 466–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_37

    Chapter  Google Scholar 

  18. Ye, C.: Tissue microstructure estimation using a deep network inspired by a dictionary-based framework. Med. Image Anal. 42, 288–299 (2017)

    Article  Google Scholar 

  19. Ye, C., Li, X., Chen, J.: A deep network for tissue microstructure estimation using modified LSTM units. Med. Image Anal. 55, 49–64 (2019)

    Article  Google Scholar 

  20. Ye, C., Li, Y., Zeng, X.: An improved deep network for tissue microstructure estimation with uncertainty quantification. Med. Image Anal. 61, 101650 (2020)

    Article  Google Scholar 

  21. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  22. Zheng, T., et al.: A model-driven deep learning method based on sparse coding to accelerate IVIM imaging in fetal brain. In: ISMRM 2021: The 29th International Society for Magnetic Resonance in Medicine (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 216 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, T., Zheng, W., Sun, Y., Zhang, Y., Ye, C., Wu, D. (2022). An Adaptive Network with Extragradient for Diffusion MRI-Based Microstructure Estimation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics