Skip to main content

Energy-Constrained Geometric Coverage Problem

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13513))

Included in the following conference series:

Abstract

Wireless sensor networks have many applications in real life. We are given m sensors and n users on the plane. The coverage of each sensor s is a disc area, whose radius r(s) and energy p(s) satisfy that \( p(s)= r(s)^\alpha \), where \(\alpha \ge 1\) is the attenuation factor. In this paper, we study the energy-constrained geometric coverage problem, which is to find an energy allocation scheme such that the total energy does not exceed a given bound P, and the total profit of the covered points is maximized. We propose a greedy algorithm whose approximation ratio is \(1-\frac{1}{\sqrt{e}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H., Arkin, E.M., Brönnimann, H., et al.: Minimum-cost coverage of point sets by disks. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational Geometry, pp. 449–458. ACM, New York (2006)

    Google Scholar 

  2. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_42

    Chapter  Google Scholar 

  3. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

    Chapter  MATH  Google Scholar 

  4. Dai, H., Deng, B., Li, W., et al.: A note on the minimum power partial cover problem on the plane. J. Comb. Optim. (2022). https://doi.org/10.1007/s10878-022-00869-8

  5. Farbstein, B., Levin, A.: Maximum coverage problem with group budget constraints. Journal of Combinatorial Optimization 34, 725-735 (2017). https://doi.org/10.1007/s10878-016-0102-0

  6. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximization. arXiv:2007.04937 (2020)

  7. Guo, L., Li, M., Xu, D.: Approximation algorithms for maximum coverage with group budget constraints. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 362–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_25

    Chapter  Google Scholar 

  8. Iyer, R., Bilmes, J.: Submodular optimization subject to submodular cover and submodular knapsack constraints. In: Koyejo, S., Agarwal, A. (eds.) Twenty-Seventh Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, vol. 2, pp. 2436–2444 (2013)

    Google Scholar 

  9. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  10. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular greedy. Oper. Res. Lett. 49, 507–514 (2021)

    Article  MathSciNet  Google Scholar 

  11. Li, W., Liu, X., Cai, X., Zhang, X.: Approximation algorithm for the energy-aware profit maximizing problem in heterogeneous computing systems. J. Parallel Distrib. Comput. 124, 70–77 (2019)

    Article  Google Scholar 

  12. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover problem with submodular/linear penalties. Theoret. Comput. Sci. 923, 256–270 (2022)

    Article  MathSciNet  Google Scholar 

  13. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum power cover problem. Optim. Lett. (2021).https://doi.org/10.1007/s11590-021-01831-z

  14. Liu, X., Li, W., Yang, J.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum vertex cover problem with submodular penalties. Front. Comput. Sci. (2022). https://doi.org/10.1007/s11704-022-1665-9

  15. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  16. Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy algorithm for monotone submodular maximization with a knapsack constraint. In: Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 1, pp. 1–22 (2021)

    Google Scholar 

  17. Wolsey, L.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

    Article  MathSciNet  Google Scholar 

  18. Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “Bring Your Own Greedy”+Max: near-optimal 1/2-approximations for submodular knapsack. In: Chiappa, S., Calandra, R. (eds.) International Conference on Artificial Intelligence and Statistics, Palermo, Sicily, Italy, pp. 3263–3274 (2020)

    Google Scholar 

  19. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. In: Schuurmans, D, Wellman, M.P. (eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence, Lake Tahoe, Nevada, pp. 819–826 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lan, H. (2022). Energy-Constrained Geometric Coverage Problem. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol 13513. Springer, Cham. https://doi.org/10.1007/978-3-031-16081-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16081-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16080-6

  • Online ISBN: 978-3-031-16081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics